Course: Mathematical aspects of quantum physics

Course instructors: Marko Nedeljkov

Course type: elective

Credit points ECTS: 12

Prerequisites: Functional analysis

Course objectives:

Invite students into the mathematical theory of quantum physics.

Learning outcomes:

Understanding of the basic principles of quantum physics.

Course description (outline):

Theoretical classes

Unitary groups of operators on Hilbert spaces, axioms of quantum mechanics, Schrödinger equation, applications of spectral properties of self-adjoint operators, bound states and scattering states, angular momentum, the simplest atomic systems; Dirac equation.

References:

- 1. M. Reed and B. Simon, Methods of modern mathematical physics, 4 volumes, Ac.Press 1975-80.
- 2. B. C. Hall, Quantum theory for Mathematicians, Springer 2013.
- 3. M. Schechter, Operator methods in quantum mechanics, Elsevier 1981.
- 4. B. Thaller, The Dirac equation, Springer 1992.
- 5. G. B. Folland, Quantum field theorya tourist guide for mathematicians, Amer. Math. Soc. 2008.
- 6. W. Thirring, Quantum mathematical physicsatoms, molecules and large systems, Springer, 2nd ed. 2002.

Active teaching hours: 5	Theoretical classes: 5	Practice classes:	
Methods of teaching:			
Lectures and independent w	ork of students		
*			
Grading structure (100 po	ints)		