Course: Introduction to Riemannian Surfaces and Algebraic Curves

Course instructors: Vladimir Dragović, Borislav Gajić, Božidar Jovanović, Milena Radnović

Course type: elective
Credit points: 10 ECTS

Prerequisites: -

Course objectives:

Course dedicated to the basics of the theory of Riemann surfaces and algebraic curves with applications in integrable systems.

Learning outcomes:

Students will learn the basics of the theory of Riemann surfaces and algebraic curves, Jacobian varieties, elliptic and theta functions and their applications in integrable systems.

Course description (outline):

Theory

- 1. Riemann surfaces, holomorphic mappings, differential forms.
- 2. Divisors, Poincare-Hopf theorem, Riemann-Hurwitz theorem.
- 3. Line bundles and sheaves on Riemann surfaces.
- 4. Riemann-Roch theorem.
- 5. Algebraic curves, singularities, Bezout's theorem, gender formula
- 6. Normalization. Hypereliptic curves.
- 7. Jacobian variety and Abel's theorem.
- 8. Theta functions and the Jacobi inverse problem.
- 9. Applications of Theta functions in integrable problems of classical mechanics.

Practice

Homework, Seminars talks

References:

- 1. P.A. Griffiths, Introduction to Algebraic Curves, AMS, 1989
- 2 P.A. Griffiths, J. Harris Principles of Algebraic Geometry, Wiley, 1994.
- 3. S. Donaldson, Riemannian Surfaces, Oxford University Press, 2011.
- 4. Б. А. Дубровин, "Тэта-функции и нелинейные уравнения", *УМН*, **36**:2(218) (1981), 11–80.
- 6. В. Драговић, М. Радновић, Понселеови поризми, квадрике и билијари,

Завод за уџбенике, Београд, 2012.

Active teaching hours:	5 Theoretical class	es: 5	Practice classes:
Methods of teaching:			
Lectures and practice, with active participation of the students, discussion, seminars, etc.			
Grading structure (100 points)			
Pre-exam obligations	Homework (30 points),	Seminar tall	x (30 points)
Exam	Oral Exam (40 points	s)	