Study program:Artificial intelligence

Name of the subject: Pattern Recognition and Machine Learning

Teacher(s): Marko Panić, Oskar Marko

Status of the subject: obligatory

Number of ECTS credits:6

Conditions: none

Subject goal

- Understanding of a wide range of pattern recognition/machine learning methods
- Understanding of advantages/disadvantages of the taught methods
- Ability to select appropriate methods for the problem at hand
- Ability to implement the taught methods in Python
- -

Outcome of the subject

- Ability and experience in applying the taught methods on real-world problems
- Ability to apply the taught methods on research problems from a wide variety of application areas

Subject content

Theory

Statistical Pattern Recognition: Bayesian Decision Theory, Quadratic Classifiers, Parameter and Density Estimation, Nearest Neighbors; Neural network approaches: Linear Discriminants, Multilayer Perceptrons, Radial Basis Functions, Validation; Clustering: Mixture models and EM algorithm, Statistical Clustering, Self-Organizing Maps; Dimensionality Reduction: Principal Components Analysis, Fisher's Discriminants Analysis, Feature Subset Selection; Advanced topics: Support Vector Machines, Hidden Markov Models, Ensemble Learning, Evolutionary algorithms, multi-objective optimisation, portfolio optimisation, reinforcement learning and transfer learning.

Practical learning

Application examples in electric grid (smart grid), computer vision, medical imaging, speech recognition, agriculture, etc.; Implementation of the taught methods in Python ; Application of selected methods on real-world examples through the course project.

Literature

Main textbook:

C. Bishop: Pattern recognition and machine learning, Springer, 2006

Textbook (additional)

R. Sutton, Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning Series), MIT Press (1998) T. Hastie, R. Tibshirani and J. Friedman: Elements of Statistical Learning. Springer, 2009R.O. Duda, P.E. Hart and D.G. Stork: Pattern Classification, Wiley, 2000.S. Theodoridis, K. Koutroumbas: Pattern Recognition, Academic Press, 2008.

Number of active teaching classes	Theoretical teaching:3	Practical teaching:2

Method of carrying out the teaching

Lectures; revisions of the material; active students' participation in problem solving; knowledge tests – colloquia; application of the taught material on real-world examples.

Evaluation of knowledge (maximum number of points 100)				
Pre-exam obligations	points	Final exam	points	
Colloquia	30	Written exam	40	
Course project	30			