Name of the subject: MOLECULAR EVOLUTION AND PHYLOGENY OF MICROORGANISMS

Teacher(s): Dr. Ivica Tamaš
Status of the subject: Elective
Number of ECTS points: 15

Condition: A prior consultation with the subject teacher.

Goal of the subject

The latest trands in molecular evolution and phylogenetic analysis of microorganisms, in particular 16rRNA based. Application of a variety of bioinformatic tools for sequence analysis such as detection of eveolutionary changes in sequences and software packages for phylogenetic reconstructions (phylogenetic trees).

Outcome of the subject

Gaining knowledge about the latest trends in molecular evolution. Performing independently phylogenetic reconstructions of individual microorganisms, as wel as microbial communities:

- 1. selection of the adequate phylogenetic markers (16 rRNA, ribosomal proteins, house-keeping genes, etc.)
- 2. mining of the public date bases for the sequences of interet
- 3. multiple sequences alignments using available software tools
- 4. construction of phylogenetic trees, as wel as interpretation of the obtained results

Content of the subject

Theoretical lectures

The dynamics of the evolutionary changes that have been introduced into sequences, sequence evolution, mutations, genomics, comparative genomics, phylogenetic reconstructions, applicable software for sequence analysis.

Practical lectures

Phylogenetic analysis of the chosen sequences from the publica data basis, either form individual microorganisms of metagenomes (https://www.ncbi.nlm.nih.gov/bioproject?term=metagenomes).

Recommended literature

- De Bruijin F. J. (2011): Handbook of Molecular Microbial Ecology I. John Wiley & sons, Inc. Hoboken, New Jersey
- 2. De Bruijin F. J. (2011): Handbook of Molecular Microbial Ecology II Metagenomics in Different Habitats, Wiley-Blackwell
- 3. Ian L. Pepper, Charles P. Gerba, Terry J. Gentry (2014): Environmental Microbiology, third edition, Academic Press, San Diego

Number of active classes Theory: 5 Practice: 5

Methods of delivering lectures

Consultations with the subject teacher, computer classes (a variety of bio informatic tools currently used for sequence analysis), individual computer work from home.

Evaluation of knowledge (maximum number of points 100)

Assignment - up to 30, Seminar up to 30, Project Presentation of scientific work up to 10. Oral exam up to 30 points