Study programme(s): Applied Mathematics (MAP)

Course title: METRIC AND NORMED SPACES (P503)

Lecturer(s): Ivana Vojnović

Course status: compulsory on modules: Techno-mathematics, Mathematics of Finance

ECTS points: 6

Requirements: Multidimensional Analysis

Learning Objectives

Acquisition of knowledge related to metric and normed spaces, primarily Banach and Hilbert spaces.

Learning Outcomes

Students will gain an understanding of the metric structure and the norm structure, as well as become familiar with some relevant function spaces and sequence spaces.

Syllabus

Theoretical instructions

Cardinal numbers and operations with cardinal numbers. Infinite-dimensional vector spaces. Topological spaces and basic properties: point neighborhoods, convergence, separability, continuity and sequential continuity. Metric spaces, equivalent metrics, topological properties of metric spaces, separable spaces, compactness, connectedness, completeness, completion of a metric space. Banach's fixed-point theorem. The function space BC (X,R).

Normed vector spaces, continuity of operations and norms, continuity of linear mappings. The function space L(X,Y). Finite-dimensional normed spaces. The inverse operator theorem.

Pre-Hilbert and Hilbert spaces, maximal and complete orthonormal systems. Separable Hilbert spaces, complete orthonormal systems and Fourier coefficients.

Practical instructions

Analysis of various function space, metrics and norms, as well as their applications.

Literature

- 1. O. Hadžić, S. Pilipović, Uvod u funkcionalnu analizu, Novi Sad, 1996.
- 2. Lj. Gajić, M. Kurilić, S. Pilipović, B. Stanković, **Zbirka zadataka iz funkcionalne analize**, Novi Sad, 2000.
- 3. John K. Hunter, Bruno Nachtergaele, Applied Analysis, World Scientific Publishing, 2001.

-	.	.
Number of active classes	Lectures: 3	Exercises: 2

Teaching methods

Lectures: exposition of theoretical basics. Exercises: analysis of various normed spaces and mappings on them through exercises, examples and problem solving tasks.

Grading (maximum number of points 100)				
Pre-exam obligations	Points	Final exam	Points	
colloquia	50	oral exam	50	