Study programme(s): Applied mathematics (MAP)

Course title: MULTIDIMENSIONAL ANALYSIS (P301)

Lecturer(s): Sanja Konjik

Course status: compulsory

ECTS points: 6

Requirements: Introduction to Analysis

Learning Objectives

Acquiring knowledge and skills in the field of differential calculus of functions of several real variables and the fundaments of integral calculus of functions of several real variables.

Learning Outcomes

Student qualified for the application of acquired knowledge and skills to specific problems in the field of multidimensional differential calculus and its applications.

Syllabus

Theoretical instructions

Functions of two and three real variables: convergence, continuity, parametric equations and curves. Differential calculus for functions of multiple variables: partial derivatives, differentiability, differential, directional derivative, conditional extrema. Operators of differential calculus: gradient, divergence, rotor, Hessian, Laplacian, etc. Implicit functions and inverse mappings. Applications of differential calculus.

Short introduction to the integral calculus of functions of several variables: double and triple integral, change of variables, Fubini's theorem.

Practical instructions

Tasks and problems in practical exercises follow the content of theoretical instructions. Application of knowledge gained in theory classes in solving specific problems and tasks.

Literature

- 1. Mirjana Štrboja, Funkcije više promenljivih sa vizualizacijom, PMF Novi Sad, 2016.
- 2. Jelena Aleksić, Predavanja iz Analize 2, PMF Novi Sad, ISBN 978-86-7031-369-9.
- 3. D. Perišić, S. Pilipović, M. Stojanović, Funkcije više promenljivih diferencijalni i integralni račun, PMF, 1997.
- 4. Stewart, J., Multivariable Calculus, 7th edition, Books/Cole, Belmont, 2012.
- 5. Stewart, J., **Calculus**, 8th edition, Cengage Learning, Boston, 2016.
- 6. S. Radenović, Matematička analiza 2 metodska zbirka zadataka, Beograd, 2002.

Number of active classes	Lectures: 3		Exercises: 3	
Teaching methods				
Expository lectures given by teachers, conversation and discussion with students, practical work, problem solving sessions and concrete applications.				
Grading (maximum number of points 100)				
Pre-exam obligations	Points	Final exam		Points
colloquia	50	oral exam		50
	1	1		1