Study programme(s): Applied Mathematics (MAP)

Course title: INTRODUCTION TO ANALYSIS (P101)

Lecturer(s): Milana Čolić

Course status: compulsory

ECTS points: 6

Requirements:

Learning Objectives

Introduction to the basic notions of mathematical analysis, the set of real numbers and real functions of a single real variable, sequences and series of real numbers, as well as the notion of limit values and continuousness of functions of a single real variable.

Learning Outcomes

The student is expected to master the understanding of the basic notions of mathematical analysis: real numbers, sequences, series and functions, as well as to master operational techniques for examining the analytical properties of sequences, series and functions.

Syllabus

Theoretical instructions

The set of real numbers. Sequences of real numbers, monotonicity, boundedness, convergence, Cauchy sequences.

Series of real numbers, convergence, and summation of series.

Real functions of a single variable; limit values, asymptotes. Continuity, local and global properties of continuous functions. Uniform continuity.

Practical instructions

Tasks and problems in practical teaching follow the content of theoretical instructions. Well-chosen exercises will illustrate the theoretical results through examples and applications, and students will adopt the working techniques.

Literature

1. Nenad Teofanov, **Uvod u analizu**, skripte, PMF, 2019.

2. Ljiljana Gajic, **Predavanja iz uvoda u analizu,** PMF, 2004.

- 3. Đurđica Takači, Arpad Takači, **Zbirka zadataka iz analize 1 prvi deo,** PMF, 2008.
- 4. James Stewart, Calculus Early Transcendentals, 8th ed., Cengage Learning, 2016.

Number of active classes	Lectures:2	Exercises:3
Teaching matheda		

Teaching methods

Exposition of the theoretical fundaments with focus on examples and applications.

Applications of theory through various exercises and problem-solving sessions.

Grading (maximum number of points 100)				
Pre-exam obligations	Points	Final exam	Points	
colloquia	50	oral exam	50	