Level: bachelor

Course title: Statistical Physics

Status: obligatory

ECTS: 4

Requirements: Modern Theoretical Physics, Fundamentals of mathematical physics

Learning objectives

Acquiring the basic knowledge of the fundamental concepts, methods and laws of statistical physics.

Learning outcomes

After taking the course, the student should have developed:

General abilities: basic knowledge of this field, following the literature, analysis of various solutions and the choice of the most adequate solution, application in practice and other subjects.

Subject-specific capabilities:

- application of methods of statistical physics in the analysis of simple model systems;

- knowledge acquired in this course presents the necessary base for the student to follow the more advanced courses (theory of magnetism, liquid crystals, superconductivity, phase transitions etc.).

Syllabus

Theoretical instruction

Elements of Classical Field Theory. Lagrangian and Hamiltonian formalism. Noether's theorem. Global symmetry. Spontaneous symmetry breaking. Local (gauge) symmetry. Ginsburg-Landau theory of superconductivity. Phase transitions of first and second order. Critical phenomena and critical indices; application of the mean-field theory to simple systems. Introduction to the theory of phase transitions: critical behaviour of Heisenberg model, mean-field approximation. Ising model. O(N) model. Landau's theory of phase transitions.

Practical instruction - Problem solving.

Weekly teaching load				Other:
Lectures:	Exercises:	Other forms of teaching:	Student research:	
2	2	0		