
Study programme(s): Information Technologies
Level: Bachelor
Course title: Architecture, Design and Patterns
Lecturer: Vladimir Kurbalija
Status: obligatory
ECTS: 7
Requirements: Object-oriented programming 1
Learning objectives
This course aims are to introduce students to a multitude of modelling techniques and designs to address the issue of
software architecture in the context of object-oriented software development. Course covers all aspects of software
design from architectural features (styles, models and views) to design models that could be described as "a common
solution to common problems in a given context" on the lower level of abstraction.
Learning outcomes
Minimum: At the end of the course, it is expected that the successful student shows clear understanding of the
impact of abstraction, modelling, architecture, and patterns in software product development and be able to critically
discuss software architectures the key concepts, designs and patterns.
Desirable: At the end of the course, it is expected that the successful student is able to critically discuss the
architectural alternatives and alternative designs, to generate a reasonable alternative for the problem and select
between them, to identify an appropriate pattern for the problem and create it, and to apply practical skills in
generating and developing software architecture and design based on functional requirements.
Syllabus
Theoretical instruction
Theoretical background of software architecture, analogy with architecture in general, the elements of software
architecture, architectural styles (ABAS), architectural patterns (Event-based, Layered, Pipes & Filters, ...),
architecture description languages, the interaction between requirements and architecture, master-plan vs. piecemeal
growths, architecture analysis and evaluation (SAAM, Scenario-based evaluation), the architectural process and
organization, model driven architecture, from the architecture to the model, re-usable architecture, design patterns,
framework and tools.
Practical instruction
Case study analysis
Literature
1. Len Bass, Rick Kazman, Paul Clements, Software Architecture in Practice, Addison Wesley, second edition.
2. M. Shaw and D. Garlan, Software Architecture. Prentice Hall 1996
3. Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley.
4. H. Rumbaugh, M. Blaha, W. Premarlani, F. Eddy, W. Lorensen: Object-Oriented Modelling and Design, Prentice-
Hall
5. G. Booch: Object-Oriented Analysis and Design with Applications, Addison-Wesley, 1994 (2nd ed.)
Weekly teaching load

Other:Lectures: 3 Exercises:
0

Practical Exercises: 2 Student research:

Teaching methodology
During the lectures classical methodology is applied, through usage of beam-projector and slides projector. During
the exercises the case studies and examples are analyzed by using the traditional methods of teaching and using the
projector. Practical skills in architecture and modelling are developed with the introduction of the recommended
tools. Students build their knowledge incrementally in each research topic. Knowledge is checked through the
realization of projects that are presented during and at the end of the course.
Grading method (maximal number of points 100)
Pre-exam oblications points Final exam points
Practical instruction 10 Oral exam 40
Seminar(s) 50

