Course Unit Descriptor

Study Programme: Physics, Professor of Physics

Course Unit Title: Fundamentals of mathematical physics

Course Unit Code: F18OMATF

Name of Lecturer(s): Associate Professor Slobodan Radošević

Type and Level of Studies: Bachelor Academic Degree

Course Status (compulsory/elective): Compulsory

Semester (winter/summer): Summer

Language of instruction: English

Mode of course unit delivery (face-to-face/distance learning): Face-to-face

Number of ECTS Allocated: 6

Prerequisites: Mathematical methods I, Mathematical methods II, Mathematical methods III

Course Aims: The aim of the course is to enable students to apply advanced mathematical knowledge from linear algebra, vector, tensor and functional analysis.

Learning Outcomes: After taking the course, students should have developed:

General abilities: basic knowledge of this field, following the literature, analysis of various solutions and the choice of the most adequate solution, application in practice and other subjects.

Subject-specific capabilities:

- mastering the elements of linear algebra, tensor and functional analysis;

- understanding the concepts of vector space and dual vector space and their application in classical and quantum physics;

- understanding the concept of eigenproblem and several methods for its solution.

Syllabus:

Theory

Finite-dimensional vector spaces: Vector; the notion and basic operations. Dual vectors and dual vector space. Operations

on vector spaces (direct sum and tensor product of vector spaces). General tensors in vector spaces; linear operators.

Unitary and Euclidean spaces. Eigneproblem in complex and real space. Vector analysis and curvilinear coordinates.

Tensor analysis.

Infinite-dimensional vector spaces: Vectors, dual vectors and linear operators in Hilbert space. Eigneproblem in Hilbert space. Some application of functional analysis on quantum mechanics: Schrodinger equation and eigen problem of the Hamilton operator (stationary states): solutions for LHO and hydrogen-type atom. Special functions (Hermite, Legendre and Laguere functions).

Practice

Problem solving.

Required Reading:

1. G. Arfken, H. Weber: Mathematical methods for physicists, Academic Press (2001).

2. S. Hassani: Mathematical physics, Springer-Verlag (1999).

Weekly Contact Hours:	Lectures: 3	Practical work: 3

Teaching Methods: Lectures

Knowledge Assessment (maximum of 100 points):

Pre-exam obligations	points	Final exam	points
Active class		witten even	20
participation		witten exam	20

Practical work		oral exam	50		
Preliminary exam(s)	30				
Seminar(s)					
The methods of knowledge assessment may differ; the table presents only some of the options: written exam, oral exam,					
project presentation, seminars, etc.					