Level: bachelor

Course title: Qualitative Methods in Physics

Status: elective

ECTS: 6

Requirements: -none

Learning objectives

Introduce students to the possibility of obtaining results without the use of rigorous mathematical formalisms

Learning outcomes

After completion of the course student should have developed:

- General skills: reading professional literature, analysis of different solutions and select the most appropriate solutions, creativity

- Subject-specific skills: the ability of independent formulation of model of physical phenomena, ability of dimensional analysis of the problem; using symmetry of problems to give a qualitative explanation; estimation of order of magnitude of various effects.

Syllabus

Theoretical instruction

The difference between quantitative and qualitative approaches in the exact sciences. The formation of models. Examples: solid body, ideal gas, Lorentz approach to electrodynamics. Dimensional analysis. An elementary approach. Pi-theorem. Fluid Mechanics.

Application of symmetry to simplify the account. The law of conservation. Application of the theory of groups.

Analytical properties. Example: the theory of dielectric constant. Analytical properties of the field theory. Analogies in physics: the exponential growth and decline, saturation, oscillations.

Practical instruction

Computational exercises and seminars.

Weekly teaching load				Other:
Lectures:	Exercises:	Other forms of teaching:	Student research:	
45	15		15	