

Study programme(s): Applied Mathematics – Data Science

Level: master studies
Course title: Software engineering
Lecturers: Zoran D. Budimac
Status: elective
ECTS: 5
Requirements: none
Learning objectives
Overview of elementary and advanced phases and techniques of software development. Preparation of
students for teamwork in characteristic phases of software development: requirements, analysis, design,
implementation, elements of management and quality control.
Learning outcomes
Minimal: Students should be able to apply the obtained knowledge, and be able to work as a team member
on the development and delivery of software products of high quality.
Optimal: Students should have good knowledge, ability for critical analysis and application of knowledge
in the field, ability to work both individually and as a team member on the development and delivery of
high quality software products, as well as the ability to analyze their quality level.
Syllabus
Theoretical instruction
Basic notions and definitions. Software quality criteria. Models of software development process and basic
concepts of the development description. Possible views on the software development process: functional,
data oriented, rule oriented, state oriented, scenario based. Structure and object-oriented analysis and
design. Formal specification. Principles and methods of implementation. Reverse engineering.
Standardization of a software development process.
Practical instruction
Analysis and practical improvement of requirements specification. Training in methods of software cost
estimation. Training in object-oriented analysis. Training in description of software product by methods of
formal specification.
Practical work on system and functional testing. Principles of software metrics and practicing of methods
of software quality measurement.
Literature
1. Eric J. Braude, Michael E. Bernstein, Software Engineering: Modern Approaches, John Wiley and sons,
2010
2. R. Pressman: Software Engineering, A Practitioner's Approach, 7th edition, McGraw-Hill, 2009
3. I. Sommerville: Software Engineering, 9th Edition, Addison-Wesley, 2010
4. G. Booch, I.Jacobson, J. Rumbaugh: The Unified Modeling Language User Guide. Addison-Wesley,
2005
Weekly teaching load Other:
Lectures: 2 Exercises: 2 Other forms of

teaching:
Student research:

Teaching methodology
Classical methodology is applied in lectures including the use of the video-beam. During exercises, case
studies are analyzed in-depth. Some aspects and principles are practically covered by software tools.
Furthermore, students study some of the covered topics and report on their findings in written papers in an
individual and more thorough manner.

Grading (maximum number of points 100)
Pre-exam obligations points Final exam Points
Four colloquia 10, 10, 10, 10 Written exam
Six practical assignments 20 Oral exam 40

