Study programme(s): Applied Mathematics – Data Science

Level: master studies

Course title: Introduction to image processing

Lecturer: Dušan Jakovetić

Status: elective

ECTS: 6

Requirements: Signals and Systems or equivalent required, Familiarity with Probability and Linear Algebra

Learning objectives

- Introduction to theories, algorithms, and practical solutions of digital image/video perception, acquisition, color representation, quantization, transform, enhancement, filtering, multi-spectral processing, restoration, analysis, feature extraction, segmentation, morphological transform, and compression.

Learning outcomes

- Students will gain understanding of algorithm design, mathematical tools, and practical implementations of various digital image applications.
- Considerations of practical system requirements (e.g., medical, satellite, consumer) will be discussed.
- Related standards such as JPEG and MPEG will be reviewed.

Syllabus

Theoretical instruction

Introduction, Image Representation; Color Space, Image Sampling; Quantization, Image Quality Measurement; Image Quality Enhancement, Discrete Fourier Transform; Frequency-Domain Filtering, Image Transform; Discrete Cosine Transform, KL Transform; Image Restoration; Image Feature; Extraction and Representation: Edge and Line; Region Segmentation and Representation; Morphological Image Processing; Image and Video Compression; Object Recognition

Practical instruction

Application examples in computer vision, medical applications, satellite systems, etc.

Literature

Selected parts of the following books:

- 8. Gonzalez and Woods, Digital Image Processing, 2nd edition, Prentice Hall, 2001.
- 9. Vaclav Hlavac, Roger Boyle, Milan Sonka, Image Processing, Analysis, and Machine Vision: 3rd (Third) edition Hardcover March 19, 2007

10. Matlab is the recommended tool for the class. Software examples will be shown in class.

Weekly teaching load					Other: 0
Lectures: 2	Exercises: 3	Other forms of tea	ching: 0	Student research: 0	
Teaching me	thodology				
Lectures; revi	isions of the n	naterial; active students	' participa	tion in problem solvin	ng; knowledge
tests - colloq	uia; homewor	ks.			
	(Grading (maximum nu	mber of	points 100)	
Pre-exam obligations		points	Final	exam	points
Colloquia + H	Homeworks	30 (Colloquia) +	written	n exam	40
-		30 (Homeworks)			