Study programme(s): Applied Mathematics – Data Science

Level: master studies

Course title: Numerical linear algebra 2

Lecturer: Vladimir R. Kostić

Status: elective

ECTS: 6

Requirements: Numerical methods of linear algebra 1

Learning objectives

Mastering basic algorithms of numerical linear algebra for large eigenvalue problems and thier implementation in MATLAB.

Learning outcomes

Students will be able to use successfully algorithms of numerical linear algebra for eigenvalue computations built-in in MATLAB, to independently solve problems in the field of applied linear algebra and to construct advanced numerical teheniques for large eigenvalue and singular value problems.

Syllabus

Theoretical instruction

Basis of iterative methods for solving eigenvalue and singular value problems. Krylov subspace methods for sparse matrces and their paralelization. Preconditioning. Non-standard eigenvalue techniques. Non-normal matirces and pseudospectral computations. Implementation of algorithms in MATLAB.

Practical instruction

Use of built-in functions in MATLAB for solution of large eigenvalue and singular value problems arising in applications (dynamical systems, control theory, signal processing, network theory). Implementation of advanced numerical algorithms in MATLAB.

Literature

1. Lloyd N. Trefethen and David Bau, III: Numerical Linear Algebra, SIAM, 1997.

2. James W. Demmel: Applied Numerical Linear Algebra, SIAM, 1997.

3. Yousef Saad: Numerical Methods for Large Eigenvalue Problems, Revised Edition (Classics in Applied Mathematics), SIAM, 2011.

Weekly teaching load				Other: 0
Lectures:	Exercises	Other forms of teaching:	Student research:	
2	3	0	0	

Teaching methodology

Lectures, revisions of the material, active student participation in problem solving, knowledge tests - colloquia.

Grading method (maximal number of points 100)					
Pre-exam obligations	points	Final exam	points		
Colloquia	50	written exam	50		