Study programme(s): Applied Mathematics – Data Science

Level: Master studies

Course title: Pattern recognition and machine learning

Lecturer: Dušan Jakovetić, Miloš Radovanović

Status: obligatory

ECTS: 6

Requirements: Basics of linear algebra and probability

Learning objectives

- Understanding of a wide range of pattern recognition/machine learning methods
- Understanding of advantages/disadvantages of the taught methods
- Ability to select appropriate methods for the problem at hand
- Ability to implement the taught methods in MATLAB

Learning outcomes

- Ability and experience in applying the taught methods on real-world problems
- Ability to apply the taught methods on research problems from a wide variety of application areas

Syllabus

Theoretical instruction

Statistical Pattern Recognition: Bayesian Decision Theory, Quadratic Classifiers, Parameter and Density Estimation, Nearest Neighbors; Neural network approaches: Linear Discriminants, Multilayer Perceptrons, Radial Basis Functions, Validation; Clustering: Mixture models and EM algorithm, Statistical Clustering, Self-Organizing Maps; Dimensionality Reduction: Principal Components Analysis, Fisher's Discriminants Analysis, Feature Subset Selection; Advanced topics: Support Vector Machines, Hidden Markov Models, Ensemble Learning, Evolutionary algorithms.

Practical instruction

Application examples in electric grid (smart grid), computer vision, medical imaging, speech recognition, agriculture, etc.; Implementation of the taught methods in MATLAB; Application of selected methods on real-world examples through the course project.

Literature

Main textbook:

12. C. Bishop: Pattern recognition and machine learning, Springer, 2006 Textbook (additional):

13. T. Hastie, R. Tibshirani and J. Friedman: Elements of Statistical Learning. Springer, 2009

14. R.O. Duda, P.E. Hart and D.G. Stork: Pattern Classification, Wiley, 2000.

15. S. Theodoridis, K. Koutroumbas: Pattern Recognition, Academic Press, 2008.

		<u> </u>					
Weekly teaching load							
Lectures: 2	Exercises: 3	Other forms of teaching: 0	Student research: 0				
Teaching methodology							
Lectures; revisions of the material; active students' participation in problem solving; knowledge							
tests – colloquia; application of the taught material on real-world examples.							

Grading (maximum number of points 100)							
Pre-exam obligations		Points	Final exam	points			
Colloquia	Course	60 = 30 (Colloquia) +	written exam	40			
	project	30 (Course project)					