Study programme(s): Mathematics (MA), Applied Mathematics (MB), Master in Mathematics Teaching (MP)

Level: master

Course title: Numerical Solving of Partial Differential Equations (MA-20)

Lecturer: Helena M. Zarin

Status: elective

ECTS: 5

Requirements: Partial Differential Equations (MA-01)

Learning objectives

Introducing students to specific procedures for the numerical solution of some classes of partial differential equations. The aim of practical exercises is mastering theoretical contents within independent work on the computer.

Learning outcomes

Student should be qualified for the theoretical analysis and practical application of some numerical methods for solving elliptic and parabolic partial differential equations.

Syllabus

Theoretical instruction

Elliptic partial differential equations. Maximum principle. Finite difference methods. Stability and convergence. Weak solution of Dirichlet and Neumann problem. Finite element methods. A priori and aposteriori error bounds. Finite volume methods.

Parabolic partial differential equations. Maximum principle. Explicit and implicit methods. θ -methods. Semidiscretization. Spectral methods. Collocation methods.

Practical instruction

Elliptic PDEs. Variational formulation. Finite difference method for Poisson PDE. Triangulation. Polynomial approximations in Sobolev spaces. Galerkin methods.

Parabolic PDEs. Heat equation. Euler and Crank-Nicolson scheme. Error analysis. Finite element approximations.

Literature

1. S. Larsson, V. Thomee, *Partial Differential Equations with Numerical Methods*, Springer, 2005.

2. P. Knabner, L. Angermann, *Numerical Methods for Elliptic and Parabolic Partial Differential Equations*, Springer, 2003.

3. A. Quarteroni, A. Valli, *Numerical Approximation of Partial Differential Equations*, Springer, 1997.

4. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Sprin	nger, 2002.
Weekly teaching load	Other: 0

Lectures: 3	Exercises: 1	Other forms of teaching: 0	Student research: 0	
Too shing mothed along				

Teaching methodology

Lectures are presented using classical teaching methods and supported by beamer presentations. Exercises are used to practice the theoretical part within the independent work on a computer using the adequate software packages. The ability of application of theoretical knowledge is verified through presentation of the seminar paper and independent solving of test problems. At the final oral examination, the student should demonstrate comprehensive understanding of the presented theoretical material.

Grading (maximum number of points 100)					
Pre-exam obligations	points	Final exam	points		
Term paper	25	Oral exam	50		
Test	25				