Course title: Homogeneous structures 2 (ID025)		
Lecturer(s): Mašulović M. Dragan, Dolinka V. Igor		
Status: elective		
ECTS: 7		
Requirements: Homogeneous structures 1 (ID024)		
Learning objectives		
Introducing students to some advanced properties of the theory of countable homogeneous		
structures.		
Learning outcome		
At the end of the course, each successful student shall be able to examine and prove certain		
advanced properties of countable homogeneous structures.		
Syllabus		
Automorphism groups. The Polish group topology. Abstract group structure of automorphism		
groups. Simple groups. Small index property. Reducts. Structural Ramsey theory. Constraint		
satisfaction. Variants of homogeneity.		
Recommended literature		
1. W. Hodges, <i>A shorter model theory</i> , Cambridge University Press 2002		
2. S. Hedman, <i>A first course in logic</i> , Oxford Texts in Logic 1, Oxford University Press, 2008		
3. P. J. Cameron, <i>Oligomorphic permutation groups</i> , London Mathematical Society Lecture		
Note Series 152, Cambridge University Press, 2001		
4. D. Macpherson, A survey of homogeneous structures, Discrete Mathematics 311(2011),		
1599-1634		
Weekly teaching load	Lectures: 2	Student research: 0
Teaching methodology		
Theoretical instruction lectures are based on the classical teaching model (blackboard+video		
beam). Students are obliged to submit a seminar paper. At the oral exam students are expected to		
demonstrate the in-depth understanding of the material.		
Grading method (maximal number of points 100)		
Seminar paper /0, Oral exam 30		