Study programme(s): Computer Science						
Level: master						
Course title: Advanced Computational Science and Optimization						
Lecturer: Dušan Jakovetić						
Status: elective						
ECTS: 6						
Requirements: Introduction to Computational Science						
Learning objectives						
- Understanding of a wide range of standard and modern numerical methods, with an emphasis on						
optimization methods						
- Ability to select an appropriate numerical algorithm for the problem at hand						
- Ability to implement the taught algorithms in selected programming languages						
Learning outcomes						
- Ability to apply the taught algorithms on real-world problems						
- Ability to apply the taught algorithms on research problems from various domains of computer						
science						
- Ability to customize and analyze efficient numerical algorithms for a given application						
Syllabus						
Theoretical instruction:						
Iterative methods for solving systems of linear equations: Jacobi, Gauss-Seidel, relaxation methods; First						
order optimization methods: gradient; projected gradient; line search; proximal gradient; accelerated						
Nesterov gradient; accelerated gradient for non-smooth optimization (FISTA); Second odred						
optimization methods: Newton; quasi-Newton; Broyden-Fletcher-Goldfarb-Shanno (BFGS); limited memory BFGS; Randomized optimization methods: randomized coordinate gradient; stochastic/online						
gradient; Parallel and distributed optimization methods: primal decomposition; dual decomposition;						
augmented Lagrangian; ADMM; distributed gradient.						
Practical instruction:						
Application examples in various domains of computer science; implementation of the taught methods in						
selected software languages; application of selected methods on real-world examples.						
Literature						
1. S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004						
2. J. Nocedal and S. Wright: Numerical Optimization, Springer, 2011						
3. D. Bertsekas and J. Tsitsiklis: Parallel and Distributed Computation: Numerical Methods,						
Prentic	e-Hall, 198	9		*		
Weekly teaching load						
Lectures:	ures: Exercise Practical Exerci			Student research:	Other:	
2	s:	2		0	0	
	0					
Teaching methodology						
Lectures; revisions of the material; active students' participation in problem solving; knowledge tests -						
			material on real wo	rld examples.		
		al numbe	er of points 100)			
Pre-exam obli	gations		Points	Final exam	points	
2 Colloquia			40	Final exam	60	