Study programme(s): Computer Science					
Level: master					
Course title: Combinatorial Algorithms					
Lecturer: Miloš Stojaković					
Status: elective					
ECTS: 6					
Requirements: Introduction to Algorithms, Discrete Structures 1, Discrete Probability and Statistics					
Learning objectives					
Students should learn and understand how to use various types of algorithms that deal with discrete data					
structures and networks.					
Learning outcomes					
Minimal: At the end of the course, it is expected that a student is familiar with the concept of computer					
processing of discrete data structures, and particularly graphs and networks.					
Desirable: At the end of the course, it is expected that a successful student is able to find a suitable					
algorithm for a given problem, to modify and adjust a standard algorithm if needed.					
Syllabus					
Data structures for storing sets, arrays and networks. Generating and enumerating the elements of the					
partitive set, subsets of fixed size, permutations. Dynamic programming, examples. Algorithms on					
networks. Network representation. Hardness, some complexity classes and polynomial reductions.					
Algorithms for finding a Hamiltonian cycle, a vertex cover, an edge cover, a dominating set, or a proper					
coloring. Steiner trees. Knapsack problem, Bin packing, TSP. Exact algorithms. Randomized algorithms.					
Approximation algorithms.					
Literature					
• T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stein, <i>Introduction to Algorithms</i> , MIT Press, 2009.					
• F.V. Fomin, D. Kratsch, <i>Exact exponential algorithms</i> , Springer, 2010.					
• V.V. Vazirani, Approximation Algorithms, Springer, 2003.					
• R. Motwani, P. Raghavan, <i>Randomized Algorithms</i> , Chapman & Hall/CRC, 1995.					
Weekly teaching load					
Lectures: Exercises: Practical		Exercises:	Student research:	Other:	
2 2	2	0		0	0
Teaching methodology					
Blackboard lectures, blackboard exercises.					
Grading method		number o	of points 100)		
Pre-exam oblications			points	Final exam	points
Colloquia			30	Oral exam	70