
Study programme(s): Computer Science
Level: academic aster studies
Course title: Software engineering in critical systems
Lecturer: Zoran D. Budimac
Status: Elective
ECTS: 4
Requirements: none
Learning objectives
The course aims to present and critically analyze critical systems as a part of software engineering and information
technology systems. Requirements for such systems are to be deeply understood and the role of formal approaches
in the life cycle of critical systems is to be deeply understood.

Learning outcomes
Minimum:
At the of the course it is expected that a successful student will be able to critically appreciate the current
classifications of critical systems, including international standards and usage of formal methods in a life cycle of
such systems. Also, it is expected that the student will be able to adopt fundamental conclusions of time-dependent
systems in the phases of requirements and design, including planning techniques.
Desirable:
At the end of a course it is expected that a successful student will show the ability to critically evaluate the usage of
temporal logic in engineering and reengineering of critical systems.
Syllabus
Theoretical instruction
Theoretical basics of critical systems, classifications and analysis, including examples and efforts towards
standardizations. Time dependent systems and technical issues in relation to them, the role of formal approaches,
software in critical systems and real-time systems, formal approaches in life cycle of critical systems, examples of
applications. Models of critical systems, computation calculus, interval-temporal logic, refinement calculus,
abstraction calculus, and evolution.
Practical instruction
Introduction to formal approaches based on models, logic and process algebra, syntax and semantics of temporal
logic with overview of tools such are executable subset of temporal logic TEMPURA,
model of temporal agents and algebraic laws with examples, examples of abstract execution of evolution. Examples
implemented with tools such is „Ana Tempura“.
Literature
Recommended
1. Ian Sommerville, 'Software Engineering, 9th edition', 2010 (chapters 16, 17, 18 and 21)
2. Ben Moszkowski, Executing Temporal Logic Programs, Cambridge Univ. Press
(http://www.cse.dmu.ac.uk/~cau/papers/tempura-book.pdf)
3. Michael Huth and Mark Ryan, Logic in Computer Science: Modeling and Reasoning about Systems, Cambridge
University Press, 2000
4. Anderson, Ross , Security Engineering, Wiley, 2001
5. Boyd, Colin and Mathuriam, Anish, Protocols for Authentication and Key Establishment, Springer, 2003.
Weekly teaching load

Other:

Lectures:
1

Exercises:
2

Practical Exercises:
0

Student research:

Teaching methodology
During lecture classes the classical methods are used with the aid of overhead projector. Exercises are mostly
consisting of case study analyses. Assignments are mostly practical, whose aim is to practically apply principles
covered during lectures and exercises, using appropriate tools.
Grading method (maximal number of points 100)
Pre-exam oblications points Final exam points
Practical assignments 60 Oral exam 40

http://www.cse.dmu.ac.uk/~cau/papers/tempura-book.pdf

