
Study programme(s): Computer Science
Level: Master studies
Course title: Compiler Construction
Lecturer: Mirjana Ivanović
Status: elective
ECTS: 8 ECTS
Requirements: Object-Oriented Programming 1, Data Structures and Algorithms 1
Learning objectives
The main objective of the course is to learn students about essential work of different phases of compilers and make
them skilled to participate at bigger project and implement compilers for simple procedural and object-oriented
languages.

Learning outcomes
Minimum: Successful students should be able to implement compiler for subset of procedural programming
language based on given grammar for language specification.
Desirable: At the end of the course it is expected that successful students are able to develop adequate software for
translation from input text to output text/form based on given specification (grammar rules).
Syllabus
Theoretical instruction
Techniques for programming languages specifications. Syntax diagrams, Backus and Extended Backus normal
forms for programming language grammar specification. Context-free grammars, LL, LR and attributed grammars.
Essential principles, tasks and phases of compilers: lexical analysis, syntax analysis using recursive descent
technique, semantic analysis (type checking) and symbol table maintenance, code generation (using Virtual
machine). Description of complete implementation of compiler for simple procedural (including some basic object-
oriented concepts) programming language. Complier generators.
Practical instruction
Practical part is oriented to the gradual developement and extension of existing parts of code for a real compiler.
During laboratory classes students have task to fully implement parts of compiler adding their own code. They
gradualy develop compiler following theoretical classes.

Literature
Recomended
1. Hanspeter Mössenböck, Compiler Construction Slides, Institut für Systemsoftware, Johannes Kepler Universität
Linz, Austria
2. V. Aho, J. D. Ullman: "Principles of Compiler Design", Addison-Wesley, 1977.
3. V. Aho, R. Sethi, J. D. Ullman "Compilers, Principles, Techniques and Tools, Addison-Wesley, 1985.
Weekly teaching load 5

Other:
/

Lectures:
2

Exercises:
1

Practical Exercises:
2

Student research:
/

Teaching methodology
Theoretical classes are based on the classical teaching model involving a projector and .ppt presentations. Basic
principles and compiler functions are presented by illustrative examples. Students are expected to pass 3 theoretical
tests.
At theoretical exercises, existing parts of code for compiler implementation will be explained in more details.
During laboratory classes students will work on implementation of particular parts of their own versions of the
compiler. All together 5 tasks-seminars are foreseen for complete implementation of the compiler and grades depend
on number of completed tasks. At the oral exam students demonstrate understanding of principles of compilers.
Grading method (maximal number of points 100)
Pre-exam oblications points Final exam points
Tests and practical tasks 60 Oral exam 40

