
Study programme(s): Computer science
Level: academic master studies
Course title: Advanced functional programming
Lecturer: Zoran D. Budimac
Status: elective
ECTS: 6
Requirements: None
Learning objectives
Introduction to advanced programming techniques in functional and hybrid programming langauges such are
Haskell, Erlang, Scala and domain specific embedded languages. The course has two focuses: theoretical and
practical, with emphasis to usage of functional programming languages in large-scale projects.
Learning outcomes
Minimal: At the end of a course, the successful student will be able to understand advanced concepts of functional
programming languages.
Desirable: At the end of a course, apart from minimal learning outcomes, it is expected that successful student
understands benefits and flaws of practical usage of functional programming in large scale projects.

Syllabus
Theoretical instruction:
Introduction to advanced constructs of functional and hybrid programming languages and the means to merge two
different paradigms in a single programming language. An overview of at least three programming languages (e.g.,
Haskell, Erlang, Scala). Monads, functors, automatic program transformations, parallelization, verification, type
inference. Advantages of using these languages in big practical projects of industrial strength.
Practical instruction
Work on a big case-study project that is written in one of mentioned languages. Analysis and adding new
functionality.

Literature
Recommended
1. O'Sullivan, B., Stewart, D., Goerzen, J., Real World Haskell, O’Reilly, 2008.

2. Martin Odersky, Lex Spoon, and Bill Venners, Programming in Scala, Addison-Wesley, 2016.
3. Cesarini, F., Thompson, S., Erlang Programming, O’Reilly, 2009.

Weekly teaching load
Other:

Lectures:
2

Exercises:
0

Practical Exercises:
2

Student research:

Teaching methodology
Classic methods of teaching are used for theoretical instruction with usage of video beam. Practical
exercises are used to analyze a large case-study project, analyze the needs for extensions and new
functionalities, and then implement them.
Grading method (maximal number of points 100)
Pre-exam oblications Points Final exam points

Assignments 30 Oral exam 40
Tests 30

