Study programme(s): Computer Science							
Level: bachelor							
Course title: Discrete Probability and Statistics							
Lecturer: Miloš Stojaković							
Status: obligatory							
ECTS: 6							
Requirements: Discrete Structures 1, Discrete Structures 2							
Learning objectives							
Students should learn and understand the basic notions and concepts of probability theory, several							
standard approaches in statistical analysis, as well as their connections with computer science.							
Learning outcomes							
Minimum: At the end of the course, it is expected that a student is able to perform basic discrete							
probabilistic analysis based on counting, and master standard statistical methods.							
Desirable: At the end of the course, it is expected that a successful student is able to apply his/her							
knowledge of probability theory in a more complicated setting, possibly requiring a deeper analysis.							
Syllabus							
Counting in combinatorics and discrete probability spaces. Formal definition of a probability space.							
Probability measure, independence, random variables. Discrete and continuous distributions, conditional							
probability. Expectation, properties. Variance, properties. Limit theorems. Simulations.							
Randomness and computation. Probability in information theory.							
Statistical analysis. Parameter estimation, maximum likelihood and moment methods, tests, confidence							
intervals.							
Literature							
• S. Ross, <i>A First Course in Probability</i> , Pearson, 2014.							
• J. Rice, Mathematical statistics and data analysis, Duxbury, 2006.							
• M. Mitzenmacher, E. Upfal. Probability and computing: Randomized algorithms and							
probabilistic analysis, Cambridge University Press, 2005.							
Weekly teaching load							
Lectures:	Exercises:	Practical Exercises:		Student research:		Other:	
2	2	0		0		0	
Teaching methodology							
Blackboard lectures, blackboard exercises.							
Grading method (maximal number of points 100)							
Pre-exam obligations			points	Final exam		points	
Colloquia			50	Oral exam		50	