Study programme(s): Computer Science					
Level: bachelor					
Course title: Discrete Structures 2					
Lecturer: Dragan Mašulović, Maja Pech					
Status: obligatory					
ECTS: 6					
Requirements: Discrete Structures 1					
Learning objectives					
In this course students shall acquire deeper knowledge of discrete processes that are vital to computer					
science and will understand the notions such as universal and existential quantification; recursive					
mathematical definitions; fundamental counting techniques; classical algebraic structures and applications					
in coding theory.					
Learning outcomes					
At the end of the course a successful student will be able to perform basic calculations in the predicate logic, be able					
to produce and understand recursive mathematical definitions, solve elementary counting problems, understand					
basic facts about classical algebraic structures and apply this knowledge to basic coding techniques.					
Syllabus					
Predicate logic (Universal and existential quantification)					
Structural induction					
Recursive mathematical definitions					
Limitations of predicate logic (e.g., expressiveness issues)					
Basic Counting					
The pigeonhole principle					
Permutations and combinations					
Inclusion-Exclusion					
Solving recurrence relations					
Basic modular arithmetic					
• Concrete algebraic structures (permutations as groups; integers and matrices as rings; rational. real and					
complex numbers as fields; finite fields)					
Introduction to coding theory					
Literature					
D. J. Hunter: "Essentials of Discrete Mathematics", Jones and Bartlett Learning, 2017					
J. Matoušek, J. Nešetril: "Invitation to Discrete Mathematics", Oxford University Press, 2008					
S. G. Krantz: "Discrete Mathematics Demystified", McGraw-Hill, 2009					
Weekly teaching load					
Lectures: Exercises: Practical		Exercises:	Student research:	Oth	ner:
3 2	0		0	0	
Teaching methodology					
Blackboard lectures, Blackboard exercises					
Grading method (maximal number of points 100)					
Pre-exam obligations		points	Final exam		points
Colloquium 1		30	Oral exam		40
Colloquium 2		30			