Study programme(s): Applied Mathematics – Data Science

Level: master studies

Course title: Introduction to Digital Signal Processing

Lecturer: Dušan Jakovetić

Status: elective

ECTS: 6

Requirements: Basics of linear algebra, Signals and systems

Learning objectives

- Understanding of fundamental concepts in digital signal processing and their application in big data analytics

Learning outcomes

- Acquired knowledge of basic concepts in digital signal processing, digital signal transforms and their application in big data analytics
- Ability to communicate/collaborate with electrical engineers on practical and research problems
- Ability to design discrete-time signal processing systems using appropriate software tools
- Ability to solve real-world problems using the acquired knowledge

Syllabus

Theoretical instruction Discrete time signals: Nyquist-Shannon sampling theorem, Discrete time Fourier transform, Discrete Fourier transform, Fast Fourier transform; Discrete time systems: Linearity and time invariance, Causality, Stability, Input-output representation, Analysis and characterization in frequency domain. Discrete Fourier transform. Fast Fourier transform. Practical aspects of interfacing analog and digital signal processing. Digital filters: Properties and design of FIR and IIR filters, practical implementation. Multirate signal processing. Adaptive filters. Advanced topics in digital signal processing related to big data analytics: Sparse DFT, DSP on graphs. *Practical instruction*

Application examples in all domains where digital signal processing is applied.

Literature

Selected parts of the following books:

- 5. John G. Proakis and Dimitris K. Manolakis: Digital Signal Processing, Principles, Algorithms and Applications, Prentice Hall, 2006.
- 6. Paolo Prandoni and Martin Vetterli: Signal Processing for Communications, EPFL Press, 2008.
- 7. Emmanuel Ifeachor and Barrie Jervis: Digital Signal Processing A Practical Approach, Prentice Hall, 2001.

Weekly teaching load					Other: 0
Lectures: 2	Exercises: 3	Other forms of teacl	ning: 1	Student research: 0	
Teaching methodology					
Lectures; revisions of the material; active students' participation in problem solving; knowledge					
tests – colloquia; homeworks.					
Grading (maximum number of points 100)					
Pre-exam obl	igations	points	Final	exam	points
Colloquia + ho	omeworks	20 (Colloquia) + 10	writte	n exam	70
		(Homeworks)			