Study program: Mathematics (Ph.D. program)				
Course: Numerical Solving of Parabolic Partial Differential Equations				
Course instructor(s): Helena Zarin				
Course type (compulsory/elective): elective				
Credit points: 10 ECTS				
Prerequisites: -				
Course objectives:				
Introduction to numerical methods for parabolic partial differential equations.				
Learning outcomes:				
Adoption of methods which enable research in the field of numerical solving of parabolic partial				
differential equations.				
Course description (outline):				
Explicit and implicit schemes. θ -schemes. Maximum principle. Stability. Semidiscretization. Methods of				
lines. Problems in higher dimensions. Standard and discontinuous discretizations.				
References:				
1. Knabner, Angermann: Numerical methods for elliptic and parabolic partial differential equations,				
Springer, 2003				
2. Quarteroni, A., Valli, A., Numerical Approximation of Partial Differential Equations, Springer,				
Active teaching hours	Theoretical classes: 2		Practice classes: -6	
Methods of teaching:				
Lectures and computer practice, with active participation of the students, discussion, etc.				
Grading structure				
Pre-exam obligations	Points	Exam		Points
8				
Colloquia	25	Oral exam		50
Seminars	25			