Study program: Mathematics (Ph.D. program)	
Course: Numerical Optimization	
Course instructor(s): Nataša Krejić	
Course type (compulsory/elective): elective	
Credit points: 10 ECTS	
Prerequisites: -	
Course objectives:	
Introduction of the numerical methods for solving optimization problems with and without constraints.	
Learning outcomes:	
The students will master the numerical methods which enable research work in optimization theory and	
will be able to apply them to real-life problems.	
Course description (outline):	
The optimization problem without constraints. Necessary and sufficient conditions. Linear search.	
Methods of confidence intervals. Newton-type methods. Method of least squares. Optimization problems	
with constraints. Theoretical foundations of algorithms. Problems of small and medium dimensions.	
Applications to models in economics and technology.	
References:	
1. Nocedal, J. Wright, S.J., Numerical optimization, Springer, 1999.	
2. Dennis, J.E., Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear	
Equations, SIAM 1996.	
3. Bartholomew-Biggs, M. Nonlinear Optimization with Financial Applications, Kluwer, 2005.	
4. M. Bazaraa, H.D.Sherali, C.M.Shetty, Nonlinear Programming, Theory and Algorithms, Wiley-	
Interscience, 2006	
5. K. Marti, Stochastic Optimization Method, Springer, 2005.	
Active teaching hours Theoretical classes: 2 Practice classes: -6	
Methods of teaching:	
Lectures and practice, with active participation of the students, discussion, seminars, etc.	
Grading structure Pre-exam obligations Points Exam Points	
Pre-exam obligationsPointsExamPoints	nts
Colloquia 25 Outrease 20	
Seminars25Oral exam25	