Study program: Mathematics (Ph.D. program)				
Course: Methods of Functional Analysis in Mechanics				
Course instructor(s): Teodor Atanacković				
Course type (compulsory/elective): elective				
Credit points: 10 ECTS				
Prerequisites: -				
Course objectives:				
Introduction to solving models in mechanics through fractional calculus.				
Learning outcomes:				
The students will be able to apply the general theory to solving equations.				
Course description (outline):				
Generalized functions and integral transformations. Fixed point theorems. Applications of fractional				
calculus in mechanics. Generalized highly elastic bodies. Anomalous diffusion. Variation principles in				
mechanics. Optimal control by fractional calculus.				
References:				
1. K. S. Miller, B. Ross, An introduction to the fractional integrals and derivatives-Theory and				
applications, John Willey and Sons, 1993				
2. T. Atanacković, Fractional calculus in mechanics, Novi Sad 2007.				
3. S. G. Samko, A.A. Kilba, S. O. I. Marichev, Fractional integrals and derivatives, Theory and				
applications, Dover Publ. INC, 1992				
Active teaching hours	Theoretical classes: 2		Practice classes: -6	
Methods of teaching:				
Lectures, with active participation of the students, discussion, seminars, etc.				
Grading structure				
Pre-exam obligations	Points	Exam		Points
Colloquia	25	Oral exam 25		25
Seminars	25			