Study programme(s): Mathema	ttics (MA)			
Level: Master				
Course title: Operator Theory (N	MA-15)			
Lecturer: Stevan Pilipović				
Status: obligatory				
ECTS: 5				
Requirements: Functional Anal	ysis (MA-05)			
Learning objectives				
Connecting the algebraic and topological structures of Functional analysis with the operator				
theory and spectral analysis of operators and Banach algebras.				
Learning outcomes				
Understanding the basic assertions of operator theory and the spectral analysis of various classes				
of operators.				
Syllabus				
Theoretical instruction				
Banach and Hilbert spaces, Bounded linear operators, Fredcholm theory, Self-adjoint operators,				
Spectral decomposition, Banach algebras, Unbounded operators and spectral decomposition,				
Concrete operators-spectral analysis.				
Practical instruction				
Exercises, students' seminar wor	k.			
Literature				
1. Y. Eidelman, V. Milman, A. Tsolomitis, Functional analysis, an Introduction, Graduate texts				
in Mathematics, American Math	-	_		
2. Lj. Gajić. M. Kurilić, S. Pilipović, Zbirka zadataka iz funkcionalne analize, Novi Sad, 2000.				
3. I. Gohlberg, S. Golhberg, M. A. Kaashoek, <i>Basic classes of linear operators</i> , Birkhauser				
Verlag, Basel, 2003.				·
4. A. D. Andrew, W. L. Green, Spectral Theory of Hilbert Spaces, 2002, School of Mathematics				
Georgia Institute of Technology Atlanta, GA 30332-0160				
Weekly teaching load				Other: 0
	Other forms of teach	ing: 0	Student research: 0	
Teaching methodology				
Classical lectures, exercises, students' seminar works.				
	ng (maximum num	ber of		1 -
Gradi Pre-exam obligations	ng (maximum num points	ber of	exam	points