Study programme(s): Informatics	s (IM)		
Level: master			
Course title: Software evolution (IB331)			
Lecturer: Miloš M. Radovanović			
Status: elective			
ECTS : 7,5			
Requirements: none			
Learning objectives			
The goal of this course is to present and critically analyze the current techniques for software			
evolution and provide students with practical experience in using a set of tools known as			
FermaT.			
Learning outcomes			
Minimal: Students should be able to critically evaluate the current basics of software evolution,			
adopt reengineering techniques for software migration and abstraction, and develop an integrated			
approach for software evolution life cycles.			
Desirable: Students should be able to demonstrate the ability to apply transformation rules in			
order to migrate a temporally and economically critical system, and acquire practical experience			
in the use of an industrial-strength tool such as FermaT.			
Syllabus			
Theoretical instruction			
Theoretical basis and classifications of software evolution, evolution within software			
development life cycles, Lehman's laws of evolution, software comprehension techniques,			
abstraction, slicing, refactoring, Wide Spectrum Language (WSL) and software transformation,			
transformation theory and its implementation, tools, and migration of software.			
Practical instruction			
Acquaintance with tools such as FermaT and analysis of study examples.			
Literature			
1. H. Yang, M. Ward. Successful Evolution of Software Systems. Artech House, 2003			
2. M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-Wesley, 1999			
Weekly teaching load Other: 0			
Lectures: 2 Exercises: 3 Other forms of teaching: 0 Student research: 0			
Teaching methodology			
Lectures are held using classical presentation methods involving a video-beam. Classical			
teaching methods involving a video-beam are used to analyze study examples in exercises. The			
principles of application of studied topics are practiced on the computer, through acquaintance			
with the use of recommended tools. Students complement their knowledge through research into			
selected topics, and are tested thro	-		nd
preparation of a seminar paper that is defended at the end of the course.			
Grading (maximum number of points 100)			
Pre-exam obligations	points	Final exam	points
test	30	seminar paper	50
practical problems	20		