
Study programme(s): Informatics (IM)
Level: master
Course title: Architecture, Design and Patterns (code IB122)
Lecturers: Vladimir Kurbalija, Danijela N. Boberić-Krstićev
Status: obligatory for the Software engineering module; elective for other modules.
ECTS: 7,5
Requirements: none
Learning objectives
To introduce students to a multitude of modelling techniques and designs to address the issue of
software architecture in the context of object-oriented software development. Course covers all
aspects of software design from architectural features (styles, models and views) to design
models that could be described as "a common solution to common problems in a given context"
on the lower level of abstraction.
Learning outcomes
Minimum: Students are expected to show understanding of the impact of abstraction, modelling,
architecture, and patterns in software product development and be able to critically discuss
software architectures, the key concepts, designs and patterns.
Optimal: Students are expected to be able to critically discuss the architectural alternatives and
alternative designs, to generate reasonable alternatives for the problem and select between them,
to identify an appropriate pattern for the problem and create it, and to apply practical skills in
generating and developing software architecture and design based on functional requirements.
Syllabus
Theoretical instruction
Theoretical background of software architecture, analogy with architecture in general, the
elements of software architecture, architectural styles (ABAS), architectural patterns (Event-
based, Layered, Pipes & Filters, ...), architecture description languages, the interaction between
requirements and architecture, master-plan vs. piecemeal growths, architecture analysis and
evaluation (SAAM, Scenario-based evaluation), the architectural process and organization,
model driven architecture, from the architecture to the model, re-usable architecture, design
patterns, framework and tools.
Practical instruction
Case study analysis.
Literature
1. Len Bass, Rick Kazman, Paul Clements, Software Architecture in Practice, Addison Wesley,
second edition.
2. M. Shaw and D. Garlan, Software Architecture. Prentice Hall 1996
3. Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley.
4. H. Rumbaugh, M. Blaha, W. Premarlani, F. Eddy, W. Lorensen: Object-Oriented Modelling
and Design, Prentice-Hall
5. G. Booch: Object-Oriented Analysis and Design with Applications, Addison-Wesley, 1994
(2nd ed.)
Weekly teaching load Other:
Lectures: 3

Exercises: 2 Other forms of
teaching:

Student research:

Teaching methodology

Classical methodology is applied in lectures including the use of video-beam and slides
projector. During the exercises, the case studies and examples are analyzed by using the
traditional methods of teaching and using the video-beam. Practical skills in architecture and
modelling are developed with the introduction of the recommended tools. Students gradually
build their knowledge in each research topic. Knowledge is checked through the realization of
projects that are presented during and at the end of the course.

Grading (maximum number of points 100)
Pre-exam obligations points Final exam points
Practical instruction 10 Oral exam 40
Seminar(s) 50

