
Study programme(s): Teaching Informatics (IC), Informatics (IM)
Level: master
Course title: Compiler construction 1 (code IA111)
Lecturers: Mirjana K. Ivanović, Danijela N. Boberić-Krstićev
Status: obligatory for the Computer Science module; elective for other modules and study
programme "Teaching Informatics".
ECTS: 7
Requirements: none
Learning objectives
Training students to design and create a compiler for a procedural or object-oriented
programming languages.
Learning outcomes
Minimum: Students should be able to write a compiler for a subset of a procedural programming
language based on the specifications provided.
Optimal: Students should be able to develop software for the transformation of general input text
to an output text, according to the specifications provided.
Syllabus
Theoretical instruction
Description of programming languages. Syntax diagrams. Backus normal form. Context-free
grammars. LL, LR and related grammars. Compiler generators. The working principle of
compilers. Attribute grammars. An example of a compiler generator.
Practical instruction
Examples of compilers for a subset of a procedural or object-oriented programming language.
The main parts of a compiler. Management of the symbol table. The basic elements of lexical
analysis. Syntax analysis – method of recursive descent. Semantic analysis of compliance types.
Abstract machine. Code generation. Optimization of code.
Literature
Suggested:.
1. Hanspeter Mössenböck, Compiler Construction Slides, Institut für Systemsoftware, Johannes
Kepler Universität
Linz, Austria
2. V. Aho, J. D. Ullman: "Principles of Compiler Design", Addison-Wesley, 1977.
3. V. Aho, R. Sethi, J. D. Ullman "Compilers, Principles, Techniques and Tools, Addison-
Wesley, 1985.
Alternative:
Mirjana Ivanovic, Compilers and interpreters, script, University of Novi Sad,
Faculty of Sciences, Department of Mathematics and Informatics, Novi Sad, 2002.
Weekly teaching load Other:
Lectures: 2 Exercises: 3 Other forms of

teaching:
Student research:

Teaching methodology
Classical methodology is applied on lectures with usage of a video-beam and slides projector.
The principles and functionalities of a compiler are explained and illustrated by examples. On
lectures, students' knowledge is checked through three tests. On exercises, the Java programming
language is used for compiler implementation. The software package "Svetovid", developed at
the Chair of Computer Science, is used to prevent cheating. On the exercises, students’

knowledge is verified through 5 assignments/seminars covering the appropriate stages of
compiler development. At the oral exam, the students should demonstrate understanding of the
principles and operations performed by the compiler.

Grading (maximum number of points 100)
Pre-exam obligations points Final exam points
Active participation in lectures 6
Practical instruction 6 Oral exam 40
Colloquia 8, 8, 8
Seminar(s) 5,5,5,4,5

