Study programme(s): Mathematics PhD						
Level: PhD						
Course title: Application of PDEs (AN-09)						
Lecturer: Marko Ž. Nedeljkov						
Status: elective						
ECTS : 10						
Requirements: Linear PDEs, Nonlinear PDEs						
Learning objectives						
Analysis of PDEs arising from other sciences						
Learning outcomes						
Student should be able to do some analysis of real models by his/her own						
Syllabus						
Theoretical instruction						
Students choose topics from:						
Gas Dynamics (1- and multi-D)						
Boltzman Equation						
Equations of Navier-Stokes type						
Magnetohydrodynamic models						
Literature						
1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009						
2. Sylvie Benzoni-Gavage, Denis Serre, Multi-dimensional Hyperbolic Partial Differential Equations,						
Oxford University Press, 2007.						
3. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,						
Springer 1984						
4C. Cercignani, The Boltzmann Equation and Its Applications, Springer, 1988						
Weekly teaching load						her:
Lectures:	Exercises	Other forms of teaching:		Student research:		
Teaching methodology Presentation and student solitary work						
Grading method (maximal number of points 100)						
Pre-exam obligations Colloquia			points 50	Final exam Oral exam		points 50
Conoquia			.///			1.777