Level: PhD Course title: Nonlinear PDEs (AN-07) Lecturer: Marko Ž. Nedeljkov Status: elective ECTS: 10 Requirements: Linear PDEs Learning objectives Basic techniques of hyperbolic conservation law systems Method in the systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic System of Conservation Laws, Oxford, 2002. Weekly teaching load Other: 0 Lectures: Exercises Other forms of teaching: Student research: 2 0 1 Echning methodology Freading method (maximal number of points 100) Pre-exam obligations points	Study programme(s): Mathematics PhD						
Lecturer: Marko Ž. Nedeljkov Status: elective ECTS: 10 Requirements: Linear PDEs Learning objectives Basic techniques of hyperbolic conservation law systems Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load Other roms of teaching: 2 : Grading method (maximal number of points 100) Pre-exam obligations							
Status: elective ECTS: 10 Requirements: Linear PDEs Learning objectives Basic techniques of hyperbolic conservation law systems Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic System of Conservation Laws, Oxford, 2002. Other: 0 Understanding load Other: 1. C.M. Dafermos, Hyperbolic System of Conservation Laws, Oxford, 2002. Other: 2 i Other forms of teaching: Student research: 2 i 6 Image: Student research: Image: Student research: 2 i 6 Image: Student research: Image: Studen	Course title: Nonlinear PDEs (AN-07)						
ECTS: 10 Requirements: Linear PDEs Learning objectives Basic techniques of hyperbolic conservation law systems Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Sylabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load Cher forms of teaching: 2 2 1 Exercises 2 0 Presentation and student solitary work Grading method (maximal number of points 100) Preseram obligations	Lecturer: Marko Ž. Nedeljkov						
Requirements: Linear PDEs Learning objectives Basic techniques of hyperbolic conservation law systems Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Sylabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Entropic Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic System of Conservation Laws, Oxford, 2002. Weekly teaching load Other: 0 Lectures: Exercises Other forms of teaching: Student research: 0 Other: 0 2 : 6 Teaching methodology Presentation and student solitary work 5 Grading method (maximal number of points 100) Pretexam obligations points	Status: elective						
Learning objectives Basic techniques of hyperbolic conservation law systems Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Other: Other forms of teaching: 2 i Other forms of teaching: 2 i 6 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations	ECTS : 10						
Basic techniques of hyperbolic conservation law systems Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Other: 0 Weekly teaching load Lectures: Exercises Other forms of teaching: Student research: 0 2 : 6	Requirements: Linear PDEs						
Learning outcomes Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 Quiter the system of Conservation Laws, Oxford, 2002. Weekly teaching load Other: 0 Lectures: Exercises Other forms of teaching: Student research: 2 Teaching methoology Presentation and student solitary work Grading method (maximal mutber of points 100) Pre-exam obligations points							
Understanding of basica analysis of conservation law systems and solving Riemann and Cauchy problems Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load 0 Lectures: Exercises 2 0 2 6 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations							
Syllabus Theoretical instruction Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load Other: 0 0 Lectures: Exercises 1: Other forms of teaching: 2 : 1: Other forms of teaching: 2 : 1: Other forms of teaching: 2 : Grading method (maximal number of points 100) Pre-exam obligations points							
Hyperbolic systems and entropy functionals. Continuum physics models and balance laws. Entropic solutions to Riemann problem, shock waves. Initial data for 1-D systems.Literature1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 20092. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002.Other: 0Other is 0Exercises 2Other forms of teaching: 6Student research: 6Other: 0Teaching methodlogyPresentation and student solitary workGrading method (maximal number of points 100)Pre-exam obligationspoints							
solutions to Riemann problem, shock waves. Initial data for 1-D systems. Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load Other: 0 Lectures: Exercises 2 i Student research: 2 i Grading methodlogy Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations points	Theoretical instruction						
Literature 1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load Other: 0 0 Lectures: Exercises 2 i 6 0 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations							
1. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, IV ed, Springer 2009 2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Weekly teaching load 0 Lectures: Exercises 2 i i Other forms of teaching: 6 Image: Conservation Laws, Oxford, 2002. Meekly teaching load 0 Lectures: Exercises 0 Other: 0 0 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Presentations Points	solutions to Riemann problem, shock waves. Initial data for 1-D systems.						
2. A. Bressan, Hyperbolic system of Conservation Laws, Oxford, 2002. Other: 0 Weekly teaching load Other: 0 Lectures: Exercises Other forms of teaching: Student research: 0 2 : 0 0 0 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations points							
Weekly teaching load Other: 0 Lectures: Exercises Other forms of teaching: Student research: 0 2 : Other forms of teaching: Student research: 0 Teaching methodology Fresentation and student solitary work 0 0 Grading method (maximal number of points 100) Pre-exam obligations points Final exam points							
Lectures: Exercises Other forms of teaching: Student research: 0 2 : Other forms of teaching: Student research: 0 Teaching methodology 6 Image: Constraint of teaching: Image: Constraint of teaching: Presentation and student solitary work Image: Constraint of teaching: Image: Constraint of teaching: Grading method (maximal number of points 100) Pre-exam obligations points							
Lectures: Exercises Other forms of teaching: Student research: Image: Constraint of teaching: 2 : 0 6 0 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations points Final exam points	Weekly teaching load					her:	
2 : 6 Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations points Final exam					0		
Teaching methodology Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations points points		Other forms of teaching:					
Presentation and student solitary work Grading method (maximal number of points 100) Pre-exam obligations points Final exam points							
Grading method (maximal number of points 100) Pre-exam obligations points Final exam points							
Pre-exam obligations points Final exam points							
· ·		Graung	,	• • •		noints	
Colloquia 50 Oral exam	Colloquia		50	Oral exam		50	