Study programme(s): Mathematics (MD)						
Level: doctoral studies						
Course title: Mathematical logic 1 (AL-20)						
Lecturer: Rozália S. Madarász-Szilagyi						
Status: elective						
ECTS: 10						
Requirements: none						
Learning objectives:						
Acquainting the students with ideas, advanced methods and techniques of mathematical logic.						
Learning outcomes:						
Understanding of concepts of mathematical logic and gaining the ability to apply the methods and						
techniques of mathematical logic to research.						
Syllabus:						
Propositional logic. Horn formulae. Resolution. Completeness and compactness. Various formalizations.						
Predicate logic. Semantics. Embeddings. Substructures. Diagrams. Theories and models. Proof theory.						
Herbrand's theory. Resolution in first order logic. Properties of first order logic. Completeness,						
compactness, the Upper and Lower Löwenheim–Skolem theorems. Amalgamation. Formula preservation.						
Supermodels and submodels. Unions of chains. Completeness and decidability. Categoricity. Random						
graphs. Quantifier elimination. Boundaries of first-order logic.						
1. E. Mendelson, <i>Introduction to Mathematical Logic</i> , D.van Nostrand, 1964.						
2. S. Hedman, A First Course in Logic, Oxford University Press, 2004.						
3. HD. Ebbinghaus, J. Flum, W. Thomas, <i>Mathematical Logic</i> , Springer, 1994.						
4. P. C. Rosenbloom, <i>The Elements of Mathematical Logic</i> , Dover Publications, 2005.						
5. Ž. Mijajlović, <i>An Introduction to Model Theory</i> , Novi Sad, 1987. Weekly teaching load Other:						
Weekly teaching load						ther:
Lectures: Exercises Other forms of teaching: Student research:						
Lectures:			orms of teaching:			
2 0 0 6						
Teaching methodology Lecturing theory with constant student interaction.						
Grading method (maximal number of points 100)						
Pre-exam oblig		Graung	points	Final exam	,	points
Colloquia			50	Oral exam		50
Conoquia			50	Utai Utaili		50