Study programme(s): Mathematics							
Level: doctoral studies							
Course title: Universal algebra 2 (AL-19)							
Lecturer: Petar V. Marković							
Status: elective							
ECTS: 10							
Requirements: Universal algebra 1 (AL-18)							
Learning objectives:							
Acquainting the students with advanced concepts, results and proof techniques of Universal algebra.							
Learning outcomes:							
The student will acquire understanding of advanced concepts and methods which allow conducting							
research in the area of universal algebra, particularly of the classification of finite algebras.							
Syllabus:							
Polynomial clones and induced structure of a subset of the algebra. Theorem by Palfy and Pudlak.							
Fundamental theorem of finite algebras. Basic properties of minimal sets. Structure of minimal algebras.							
Five types. Type 2. Nonabelian types. E-minimal algebras. Types of covering in a congruence lattice.							
Subtraces and snags. Nonabelian covers and pseudo-complements. Semidistributive laws (meet-, join-).							
Lattice theoretic characterization of nonabelian covers. Solvability and congruence meet-							
semidistributivity. Willard terms and the Willard finite basis theorem. Congruence modularity and							
distributivity. Free spectra. Generative complexity.							
Literature							
1. D.Hobby, K.N.McKenzie, The Structure of Finite Algebras, American Mathematical Society, Drovidence, 1988							
2 R N McKenzie G E McNulty W E Taylor Algebras Lattices Variaties I Wadsworth and							
2. K.IV.INCKEIIZIC, O.I. INICINUITY, W.F. I AYIOI, AIGEDIAS, LAUICES, VAIIEUES, I, WAUSWOITH AND Brooks/Cole Monterey 1987							
3 S Burris H P Sankannanavar A Course in Universal Algebra Springer-Verlag 1981							
Weekly teaching load							her
							ner.
Lectures: Exercises Other forms of teaching:				Sti	udent research.		
2	0	0	oring of toto ling.	6			
Teaching methodology							
Lectures are presented using classical teaching methods. The students are given homework problems							
which are discussed in class throughout the semester. On one colloquium the students demonstrate their							
ability to independently solve problems related to the course material. The final exam is oral and the							
student is supposed to demonstrate a general understanding of the presented theoretical material.							
		Grading	method (maxima	l nu	mber of points 100)		
Pre-exam obli	gations		points		Final exam		Points
Colloquium			30		Oral exam		70