Study programme(s): Mathematics							
Level: doctoral studies							
Course title: Universal algebra 1 (AL-18)							
Lecturer: Petar V. Marković							
Status: elective							
ECTS: 10							
Requirements: Universal algebra (MA-18)							
Learning objectives:							
Acquainting the students with basic concepts, results and proof techniques of Universal algebra.							
Learning outcomes:							
The student will acquire understanding of basic concepts and methods which allow conducting research in							
the area of universal algebra.							
Syllabus:							
Examples of commutators in groups and rings. Congruence modular varieties and Day terms. Shifting							
Lemma and its applications. Several definitions of a commutator: centralizer, $[\alpha,\beta]$, $[\alpha,\beta]$ s, M(α,β). Basic							
properties of the commutator. Abelian, strongly Abelian, nilpotent and solvable congruences. Commutator							
in congruence modular varieties: equivalence of various definitions. Residuated lattice of congruences.							
Generating $[\alpha,\beta]$ in A ⁴ . Abelian and affine algebras in congruence modular varieties. Difference term.							
Permutability. Gumm terms and congruence modularity. Nilpotent algebras, decomposition and							
congruence regularity. Rings associated with varieties. Structure of algebras in congruence modular							
varieties.							
Literature							
1. R.Freese, R.N.McKenzie, Commutator Theory for Congruence Modular Varieties, Cambridge							
University Press, 1987.							
2. R.N.McKenzie, G.F.McNulty, W.F.Taylor, Algebras, Lattices, Varieties, I, Wadsworth and							
Brooks/Cole, Monterey, 1987.							
3. S.Burris, H.P.Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.							
Weekly teaching load							her:
Lectures:	Exercises	Other f	orms of teaching:	S	tudent research:		
2	0	0		6			
Teaching methodology							
Lectures are presented using classical teaching methods. The students are given homework problems							
which are discussed in class throughout the semester. On one colloquium the students demonstrate their							
ability to independently solve problems related to the course material. The final exam is oral and the							
student is supp	osed to demo	onstrate a	general understan	din	g of the presented theoretical m	later	ial.
		Grading	method (maxima	l n	umber of points 100)		r
Pre-exam obligations			points		Final exam		Points
Colloquium			30		Oral exam		70