Study programme(s): Mathematics				
Level: doctoral studies				
Course title: Ordered set theory 1 (AL-17)				
Lecturer: Branimir M. Šešelja				
Status: optional				
ECTS : 10				
Requirements: none				
Learning objectives				
Acquiring knowledge in most important orderings in mathematics, their properties and role in				
mathematical theories.				
Learning outcomes				
Minimal: Acquiring and understanding the fundamental notions and relevant properties connected with				
orderings.				
desirable : Ability of individual and creative solving of advanced problems in orderings and essential				
understanding of most important notions and properties of ordered structures.				
Syllabi				
Basic notions and claims: fixed points, closure operators, completions.				
Chains and anti-chains. Well orderings.				
Products of orders, cardinal power. Lattices.				
Complete, algebraic and compact ordered sets.				
Literature				
1. B.S.W. Schröder, Ordered sets, an Introduction, Birkhäusser, 2003.				
2. E. Harzheim, Ordered Sets, Springer, 2005.				
3. M. Erne, Algebraic ordered sets and their generalizations, In: Rosenberg, I., and Sabidussi, G.				
(eds.), Algebras and Orders. Kluwer, Amsterdam, 1993.				
Weekly teaching load				Other:
	_			0
Lectures:	Exercises	Other forms of teaching:	Student research:	
2	0	0	6	
Teaching methodology				
Theoretical lessons with examples; permanent interaction and communication with students.				
Grading method (maximal number of points 100)				

Final exam

Written exam

points

50

points

50

Pre-exam obligations Colloquia