Study program: Mathematics (Ph.D. program)				
Course: Set Theory 2				
Course instructor(s): Miloš Kurilić				
Course type (compulsory/elective): elective				
Credit points: 10 ECTS				
Prerequisites: -				
Course objectives:				
Studying the techniques of building models of set theory (inner models, forcing).				
Learning outcomes:				
Minimal:				
Understanding of the studied parts of the set theory through reproduction of its main results.				
Desirable:				
Deeper understanding of the theory, through more sophisticated examples, applications and connections to				
other braches of mathematics.				
Course description (outline):				
Suslin's problem. Trees. The principles of diamond and diamond-plus. Transitive models of the set theory.				
Relativization and absoluteness. Contructible sets, the consistency of ZFC + GCH. The hierarchy of classes,				
relations and functions. Complete Boolean algebras. Boolean-valued models. Generic extensions. Forcing.				
Independence of CH and AC. Forcing and infinite combinatorics (applications of forcing). The problem of				
measure, measurable cardinals. Ultrapowers and elementary embeddings. Silver's indiscernibles. The model				
L[U].				
References:				
1. Thomas Jech, Set Theory, Springer, 1997.				
2. Kenneth Kunen, Set Theory: an Introduction to Independence Proofs, North-Holland, 1980.				
3. Frank R. Drake: Set Theory: an Introduction to Large Cardinals, North-Holland, 1974.				
Active teaching hours	Theoretical class	asses: 2 Practice classes: -		5
Methods of teaching:				
Lectures, with active participation of the students, discussion, etc.				
Grading structure				
Pre-exam obligations	Points	Exam Points		Points
Colloquia	50	Oral exam 50		50
Seminars				50