Study program: Mathematics (Ph.D. program)				
Course: Set Theory 1				
Course instructor(s): Miloš Kurilić				
Course type (compulsory/elective): elective				
Credit points: 10 ECTS				
Prerequisites: -				
Course objectives:				
Introduction to elements of the classical set theory.				
Learning outcomes:				
Minimal:				
Understanding of the studied parts of the set theory through reproduction of its main results.				
Desirable:				
Deeper understanding of the theory, through more sophisticated examples, applications and connections to				
other braches of mathematics.				
Course description (outline):				
The axiom system of the Zermelo-Fraenkel (ZF) set theory. Partially and well ordered sets. Ordinals,				
transfinite induction and recursion. Ordinal arithmetic (addition, multiplication, exponentiation). Cardinals				
and cardinal arithmetic. Well founded sets. Almost disjoint and quasi-disjoint sets. Martin's axiom and its				
equivalents. Filters and ideals, closed unbounded, stationary and thin sets.				
References:				
1. Thomas Jech, Set Theory, Springer, 1997.				
2. Kenneth Kunen, Set Theory: an Introduction to Independence Proofs, North-Holland, 1980.				
3. Frank R. Drake: Set Theory: an Introduction to Large Cardinals, North-Holland, 1974.				
Active teaching hours	Theoretical classes: 2		Practice classes: -6	
Methods of teaching:				
Lectures, with active participation of the students, discussion, etc.				
Grading structure				
Pre-exam obligations	Points	Exam Points		
Colloquia	50	Oral exam 50		50
Seminars		50		50

Seminars