Study programme(s): Mathematics								
Level: doctoral studies								
Course title: Combinatorial group theory (AL-03)								
Lecturer: Petar V. Marković								
Status: elective								
ECTS: 10								
Requirements: Goup theory (M3-20)								
Learning objectives:								
Acquainting the students with basic concepts, results and proof techniques of modern group theory.								
Learning outcomes:								
The student will acquire understanding of basic concepts and methods which allow conducting research in								
the area of group theory.								
Syllabus:								
Presentations of semigroups and groups. Tietze transformations. Free groups. Varieties of groups. Free								
products. Subgroups of free products. The Grushko-Neumann theorem. Generalizations of free products.								
Automorphisms of free groups. Geometric methods. Cayley graphs of presentations. Van Kampen								
diagrams and the Van Kampen Lemma. Word problem and conjugacy problem. Britton's Lemma. The								
Dehn algorithm. Small cancellation theorem. One-relator groups and Magnus Theory.								
Literature								
1. R.Lyndon, P.Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, New York, 1977.								
2. W.Magnus, A.Karrass, D.Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of								
Generators and Relations, Interscience Publishers [John Wiley & Sons, Inc.], New York, London, Sydney,								
1966.								
3. М.Груловић, Основи теорије група, Универзитет у Новом Саду, 1997.								
Weekly teaching load							her:	
							0	
Lectures:	Exercises	Other f	orms of teaching:	S	tudent research:			
2	0	0	-	6				
Teaching methodology								
Lectures are presented using classical teaching methods. The students are given homework problems								
which are discussed in class throughout the semester. On one colloquium the students demonstrate their								
ability to independently solve problems related to the course material. The final exam is oral and the								
student is supposed to demonstrate a general understanding of the presented theoretical material.								
Grading method (maximal number of points 100)								
Pre-exam obligations			points		Final exam		Points	
Colloquium			30		Oral exam		70	