Level: bachelor

Course title: Fundamentals of mathematical physics

Status: obligatory

ECTS: 6

Requirements: Mathematics I and II, Mechanics, Thermodynamics

Learning objectives

Students obtain the basis of the mathematical formalism necessary for understanding the theoretical physics courses.

Learning outcomes

After finishing the course, student should have developed:

General abilities: basic knowledge from this field, following the literature; analysis of various solutions and the choice of the most adequate solution, better understanding of the mathematical methods, application in other fields, creativity.

Subject-specific abilities: knowledge of vectors and vector field calculations; the application of Fourier analysis; operator calculations, solving the eigen-problem of operators and tensors; knowledge of the basic properties of Schroedinger equations and exactly soluble cases.

Syllabus

Theoretical instruction

Vector algebra, vector analysis, generalized coordinates. Application of ordinary differential equations to physics, Fourier analysis. Operators, matrices and tensors: definition, properties, eigenvalue problem. Mathematical formalism of quantum mechanics.

Practical instruction

Problem solving.

Weekly teaching load				Other:
Lectures:	Exercises:	Other forms of	Student research: 0	
3	2	teaching: 0		