Level: master
Course title: Radiation dosimetry
Status: elective
ECTS : 9

Requirements: Contemporary Experimental Physics III, Nuclear Physics

Learning objectives

Radiation dosimetry course introduces students to the general principles of dosimetry and regulations in this area.

Learning outcomes

Students should be familiar with the concept of radiation measurement and dosimetry. Students should be qualified to take the responsibility of a dosimetrist in medicine, industry and all other areas of radiation application.

Syllabus

Interaction of ionizing radiation with matter (Photon interactions. Neutron interactions. Passage of charged particles through matter). Direct measurement of absorbed dose (Dose units. Calorimetric measurement of absorbed dose). Measurement of exposition. Kerma. Determination of absorbed dose (Absorbed dose in air and other materials. Conversion factors). Comparison of electron, photon and neutron dosimetry. Dosimetry methods (Ionization chamber dosimetry. Chemical, thermoluminescent and photo dosimetry. Scintillation dosimetry). Dosimetry and radiation protection (Equivalent dose. Quality factors. Effective equivalent dose).

Weekly teaching load				Other:
Lectures: 3	Exercises:	Other forms of	Student research:	
	1	teaching: 1		