Study programme(s):PhD in Environmental Protection					
Level: PhD studies					
Course title: Environmental Quality Control (advanced course)	Subject code:	DZZS-605			
Lecturer(s): Dr Ivana Ivančev-Tumbas	•				
Status: elective					
ECTS:15					
Requirements: none					

Learning objectives

To enhance the knowledge in the field of environmental quality assessment and quality control.

Learning outcomes

Upon finishing of the course student is able to

- 1. demonstrate broad knowledge of environmental quality control methods among optical, spectrometric, electrochemical and chromatographic methods.
- 2. develop and critically evaluate analytical method independently.

Syllabus

Theoretical instruction- Selection of analytical procedures and analytical methods development in the field of environmental analysis.

Practical instruction- Development of the method validation plan.

Literature

Internal lecture material, E-material developed within ERASMUS+ NETCHEM project: GC/MS Method validation plan (I. Ivančev-Tumbas), Matrix interferences in the flame atomic absorption spectrofotometry (S. Maletić, I. Ivančev-Tumbas) and Method optimisation for analysis of anions by ion chromatography (S. Maletić i I. Ivančev-Tumbas), https://mdl.netchem.ac.rs/course/view.php?id=25 Standard methods for environmental analysis

Additional literature:

- 1. M. Csuros Environmental Sampling and Analysis Lab Manual, Lewis Publishers, 1994.
- 2. H. Small: Ion Chromatography, Plenum Press, New York and London, 1990.
- 3. Grob R.L. Modern Practice of Gas Chromatography, 4thedition, Wiley-Interscience, 2004
- 4. Loon J.C. Van Selected methods of Trace Metal Analysis, biological and environmental samples, Wiley-Interscience 1985.
- 5. Reemstma T., Jekel M.: Organic Pollutants in the Water Cycle, properties, occurence, analysis and environmental relevance of polar compounds, WILEY-ICH, 2006.
- 6. Standard methods http://www.epa.gov/osw/hazard/testmethods/sw846/online/index.htm
- 4. Selected Applications notes
- 5. Selected scientific papers
- 6. A. Tubić (2019), TOC analysis of water, http://mdl.netchem.ac.rs/course/view.php?id=19

Weakly teaching load				
Lectures:5	Exercises:-	Other forms of teaching: -	Student research: 5	

Teaching methodology

Lectures, independant research work- seminar with literature search (internet and library sources), video files use (http://mdl.netchem.ac.rs/course/view.php?id=25), us of Cmap, research work related to analytical method validation that requires written report and consultations, selected remote letcures and excercises (http://netchem.ac.rs/remote-acces).

Grading method (maximal number of points 100)

Pre-exam obligations	points	Final exam	points
Seminar	30	Written exam-report on independent research work	40
		Oral exam	30