Study programme(s): Mathematics (MD)					
Level: doctoral studies					
Course title: Semi-Riemannian Geometry (AN-25)					
Lecturer: Sanja Konjik					
Status: elective					
ECTS: 10					
Requirements: none					
Learning objectives:					
Learning outcomes:					
Syllabus:					
- The theory of manifolds (smooth manifolds, smooth maps, tangent vectors, curves, vector fields, 1-forms,					
submanifolds, immersion and submersion, topology of manifolds, integral curves)					
- Tensors (tensor fields, components, contractions, covariant tensors, feed, symmetric bilinear form, the					
scalar product)					
- Semi-Riemannian manifolds (isometrics, Levi-Civita connection, parallel move, geodesics, exponential					
map, curvature (sectional, Ritchie, scalar), semi-Riemannian surfaces of semi-Riemannian submanifolds)					
- Lorentz and Riemannian geometry					
Literature:					
- O'Neil, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, NY, 1983					
- Abraham, R., Marsden, J.E., <i>Foundation of Mechanics</i> , Benjamin/Cummings, 1978					
- Boothby, W. M., An introduction to Differentiable Manifolds and Riemannian Geometry, revised 2nd ed., Academic					
Press, San Diego, 2005 De Corme M. D. Biomannian Coometry, Birkhöuser, Besten, 1002					
Lee I. M. Riemannian Manifolds. An Introduction to Curvature. Springer Verlag. NV 1007					
Weekly teaching load					/ thor:
weekiy teaching loau					lifer.
U actures: Evereises Other forms of teaching: Student research:					
2 Exercise		orms or teaching.			
Z U Tapahing methodology					
Lecturing theory with constant student interaction					
Crading method (maximal number of points 100)					
Dre even obligations noints points Final even					
Colloquia		50	Orol ovor		
Conoquia		50	Ofai exaili		30