Study programme(s): Mathematics (MD)

Level: PhD

Course title: Wavelets and Gabor analysis 2

Lecturer: Nenad M. Teofanov, Stevan R. Pilipovic

Status: optional

ECTS: 10

Requirements: none

Learning objectives

Understanding of basic results in frame theory, time-frequency analysis and their applications.

Learning outcomes

It is expected that a student meets and learns basic properties and examples of frames and analysis of spaces of functions through frames.

It is desirable that a student adopts the knowledge of basic theorems and their proofs and understands corresponding applications in signal analysis and synthesis.

Syllabus

Системи оквира, малоталасни и Габорови оквири. Оператор оквира. Габорова трансформација, анализа и синтеза з просторима функција.

Frame systems, wavelet and Gabor frames. Frame operator. Gabor transform, analysis and synthesis in spaces of functions.

Literature

- 1. Gröchenig, K. Foundations of time-frequency analysis. Birkhäuser Boston, 2001.
- 2. Y. Meyer, Wavelets and Operators, Cambridge University Press, 1992.
- 3. I Daubechies, Ten Lectures on Wavelets. SIAM, 1992.

Weekly teaching load					Other:
Lectures: 2	Exercises: 0	Other for	ms of teaching:	Student research: 6	
Teaching methodology Exposition of theoretical basics with comments. Applications of theory through various examples of applications.					
Grading method (maximal number of points 100)					
Pre-exam obligations			points	Final exam	points
Colloquia		60	Oral exam	40	