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Foreword

This educational-purpose manuscript represents a supporting (auxiliary) text-
book for the course �Distributed optimization with applications� within the
master program �Applied mathematics � Data science� at the University of
Novi Sad, Faculty of Sciences. The related course assumes that students
possess solid background in standard concepts from numerical optimization,
gained through the course �Fundamentals of numerical optimization� within
the same master program. The manuscript covers a major part of the course
curriculum, focusing on distributed methods for convex, non-smooth opti-
mization, and is aimed to assist students in acquiring solid understanding of
the concepts thought in class. The manuscript represents a supporting ma-
terial, while a more elaborated treatment of most of the topics can be found
in the references provided. In more detail, Chapter 1 of the manuscript
starts with reviewing relevant concepts and properties of convex functions.
Chapter 2 reviews elements of subgradient calculus and subgradient meth-
ods. Chapter 3 is concerned with duality theory. The material in Chapters
1-3 provides a required background for understanding of design and analy-
sis of parallel and distributed optimization methods for convex (non)smooth
problems. Chapter 4 introduces some common communication and computa-
tional (optimization) models and provides several application examples. The
chapter also considers dual distributed methods, while Chapter 5 considers
primal (sub)gradient methods. Chapter 6 considers an advanced topic and
is recommended for students that would like to understand the materials
beyond the nominal curriculum. The Chapter is concerned with the primal
distributed methods based on the Nesterov gradient method. Finally, we
conclude in Chapter 7.

Novi Sad, February 2020 Du²an Jakoveti¢, Aleksandar Armacki
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Chapter 1

Convex functions

This chapter gives the de�nition of a convex function and provides some
examples of convex functions. It also describes some commonly used rules
on how to characterize convex functions. This is standard material, see, e.g.,
[1, 2, 3, ?], for which we primarily closely follow [1] in Section 1.2. We also
closely follow [4] throughout the Chapter.

1.1 Introduction

A commonly studied class of functions found in optimization problems is the
class of convex functions. Informally, a function is convex, if the function
value of a convex combination of any two points is less than or equal to
the convex combination of the function values at those two points. More
formally, a convex function is de�ned as follows.

De�nition 1.1. A function f ∶ IRd ↦ IR is convex if

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y), (1.1)

for all θ ∈ [0,1] and all x, y ∈ IRd. If strict inequality holds for all x, y and θ,
we say that the function is strictly convex.

If a function is twice di�erentiable, a necessary and su�cient condition
for convexity can be stated ([1], Section 3.1.4) as follows.

Proposition 1.1. A twice di�erentiable function f ∶ IRd ↦ IR is convex if
and only if

∇2f(x) ⪰ 0, (1.2)

for all x ∈ IRd. If a strict inequality holds for all x, we say that the function
is strictly convex.

3



4 CHAPTER 1. CONVEX FUNCTIONS

Here, notation A ⪰ 0 means that matrix A is positive semi-de�nite.

Remark. Equation (1.2) states that for a function to be convex, it su�ces
that its Hessian matrix is positive semi-de�nite. Recall that a (symmetric)
matrix M ∈ IRd×d is positive semi-de�nite if one of the following (equivalent)
conditions holds:

� xTMx ≥ 0, for all x ∈ IRd,

� all eigenvalues of M are nonnegative.

Example 1.1.1. A�ne function:

We consider the function f ∶ IRd ↦ IR, given by f(x) = aTx + b, where
a ∈ IRd, b ∈ IR. We would like to show that f(x) is a convex function.

In order to do so, pick any two points x, y ∈ IRd and an arbitrary θ ∈ [0,1].
We want to show that in the case of our f , (1.1) holds for x, y and θ.

f(θx + (1 − θ)y) = aT (θx + (1 − θ)y)) + b = θaTx + (1 − θ)aTy) + (1 ± θ)b
= θ(aTx + b) + (1 − θ)(aTy + b) = θf(x) + (1 − θ)f(y)

We have shown that f(θx + (1 − θ)y) = θf(x) + (1 − θ)f(y), for all x, y ∈ IRd

and θ ∈ [0,1]. Therefore, f is convex. Additionally, it can be shown that
f(x) is also concave.

To do so, �rst recall that a function f is concave if g(x) = −f(x) is convex.
If we de�ne â = −a and b̂ = −b, then based on what we have just proven, we
can conclude that g(x) = âTx + b̂ = −f(x) is convex, therefore showing that
f(x) is concave.

Alternatively, to show that f is convex, we can prove that its Hessian
is positive semi-de�nite. Recall that we compute the gradient of a function
f ∶ IRd ↦ IR through its partial derivatives as follows.

∇f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂x1

(x)
∂f
∂x2

(x)
⋮

∂f
∂xd

(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.3)

Knowing that we can rewrite our f(x) = aTx + b as

f(x) = a1x1 + a2x2 + . . . + adxd + b,

it is not hard to see that in our particular example, the gradient of f is given
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by

∇f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ad

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Recalling that the Hessian is computed as

[∇2f(x)]ij =
∂2f

∂xi∂xj
(x),

it is not hard to see that the Hessian evaluates to the zero matrix (exercise).
Therefore, we have shown that ∇2f(x) ⪰ 0, for all x ∈ IRd, hence showing
that f is convex ∎

Example 1.1.2. Quadratic function:

We consider the function f ∶ IRd ↦ IR, given by f(x) = 1
2x

TAx + bTx + c,
where A ∈ IRd×d is a symmetric positive semi-de�nite matrix, b ∈ IRd is a
vector, and c ∈ IR is a scalar. We want to show that f(x) is convex.

To do so, we start by rewriting the function f as

f(x) = 1

2

d

∑
i,j=1

Aijxixj +
d

∑
i=1

bixi + c.

Recalling how we compute the gradient (1.3), it is not hard to see that

[∇f(x)]i =
∂f

∂xi
(x) = Ai1x1 +Ai2x2 + . . . +Aidxd + bi. (1.4)

Writing matrix A in terms of its columns, i.e.

A = [a1∣a2∣ . . . ∣ad],

we get to an equivalent representation of (1.4),

[∇f(x)]i = aTi x + bi.

From the expression above, we can conclude that the full gradient is of the
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form

∇f(x) =
⎡⎢⎢⎢⎢⎢⎣

∂f
∂x1

(x)
⋮

∂f
∂xd

(x)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aT1 x + b1

⋮
aTd x + bd

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aT1
⋮
aTd

⎤⎥⎥⎥⎥⎥⎦d×d

⎡⎢⎢⎢⎢⎢⎣

x1

⋮
xd

⎤⎥⎥⎥⎥⎥⎦d×1

+
⎡⎢⎢⎢⎢⎢⎣

b1

⋮
bd

⎤⎥⎥⎥⎥⎥⎦d×1

. (1.5)

Noting that the �rst term on the left-hand side of (1.5) is actually the
transposed matrix A, and recalling that the matrix A is symmetric, we can
write the gradient of f as

∇f(x) = Ax + b. (1.6)

Recalling the partial derivatives from (1.4), we can calculate the second-
order partial derivatives as

∂2f

∂xi∂xj
(x) = Aij

∂2f

∂2xi
(x) = Aii

,

which implies that
∇2f(x) = A. (1.7)

From (1.7) and recalling that A ⪰ 0, we can conclude that f is convex.

In the case where A ⪯ 0, f becomes a concave function. To show this, we
�rst recall that a (symmetric) matrix M ∈ IRd×d is negative semi-de�nite if
one of the following (equivalent) conditions holds:

� xTMx ≤ 0, for all x ∈ IRd,

� all eigenvalues of M are nonpositive,

� −M is positive semi-de�nite.

Next, we use the fact that, for a function f to be concave, it su�ces to
show that −f is convex.

Consider g(x) = −f(x) = 1
2x

T (−A)x + (−b)Tx + (−c). Denote Â = −A,
b̂ = −b and ĉ = −c. Because A ⪯ 0, we know that Â ⪰ 0 (exercise). From the
previous proof, we can conclude that g(x) = 1

2x
T Âx+xT b̂+ ĉ is convex. Since

f(x) = −g(x), it implies that f is concave, which is what we wanted to show.
In the case of A = 0, f evaluates to an a�ne function (as in the �rst

example) and so it is both convex and concave.
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Another interesting case to consider is that of A being neither positive
nor negative semi-de�nite. In this case, f is neither convex nor concave. To
illustrate, consider a quadratic function f ∶ IR2 ↦ IR, given by f(x) = xTAx,
where

A = [1 0
0 −1

] .

In this case, we can write f as: f(x) = x2
1 − x2

2. To see that f is not convex,
observe its behaviour along (0, x2), whereas to show that f is not concave,
observe its behaviour along (x1,0).

Note that in all the cases so far, we assumed A to be a symmetric matrix.
We now consider the case when A is not symmetric. First, note that the
quadratic form of a matrix and its transpose is the same (exercise). Therefore,
we can rewrite function f as f(x) = 1

2x
T (A+AT2 )x + bTx + c, that ensures the

matrix that corresponds to the quadratic term is symmetric.

1.2 Rules for recognizing convex functions

There are a few standard rules that guarantee a function is convex. Here, we
list some frequently used rules, e.g., [1]:

1. Concatenation of an a�ne function and a convex function:

Let h ∶ IRd ↦ IRm be an a�ne function, given by h(x) = ATx+ b, where
A ∈ IRd×m and b ∈ IRm, and let g ∶ IRm ↦ IR be a convex function. Then,
the function f ∶ IRd ↦ IR, given by f(x) = g(ATx + b) = g(h(x)) is a
convex function.

2. Pointwise supremum of convex functions:

Let {fi}i∈A, fi ∶ IRd ↦ IR be a family of functions, where A ≠ ∅. De�ne
φ ∶ IRd ↦ IR, as φ(x) = supi∈A fi(x). If fi is convex for all i ∈ A, then φ
is convex as well.

3. In�mum rule:

Let f ∶ IRm × IRn ↦ IR, and de�ne φ ∶ IRm ↦ IR, as φ(x) = infy∈C f(x, y),
where C is a non-empty set. If C is a convex set and f is a convex
function, then φ is convex.

4. Non-negative weighted sum:

Let {fi}mi=1, fi ∶ IR
d ↦ IR, fi convex, for all i = 1, . . . ,m. Let {αi}mi=1 be

a �nite sequence of non-negative real numbers. Then, for f ∶ IRd ↦ IR,
de�ned by f(x) = α1f1(x) + . . . + αmfm(x) it holds that f is convex.
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Example 1.2.1. Norms:

Recall that a norm is any function ∥ ⋅ ∥ ∶ IRd ↦ IR, that satis�es:

1. ∥ax∥ = ∣a∣∥x∥, for all a ∈ IR, for all x ∈ IRd,

2. ∥x + y∥ ≤ ∥x∥ + ∥y∥, for all x, y ∈ IRd,

3. ∥x∥ ≥ 0, for all x ∈ IRd,

4. ∥x∥ = 0 ⇐⇒ x = 0, for all x ∈ IRd.

In optimization, norms are used as cost functions (e.g. when minimizing
the distance from a target position in target localization, or when minimizing
the di�erence between the predicted and the true values in machine learning),
or often times as regularizers (e.g., introducing L1 or L2 regularization to
induce (group) sparsity in the solution). Some of commonly used norms
include:

� L1 norm - ∥x∥1 = ∣x1∣ + ∣x2∣ + . . . + ∣xd∣,

� L2 norm - ∥x∥2 =
√
x2

1 + x2
2 + . . . + x2

d,

� L∞ norm - ∥x∥∞ = maxi=1,...,d ∣xi∣.

Any norm on IRd is convex. In order to show this, pick any x, y ∈ IRd and
any θ ∈ [0,1]. We want to prove that (1.1) holds for f ≡ ∥ ⋅ ∥. Starting from
the LHS of (1.1), we get

∥θx + (1 − θ)y∥ ≤ ∥θx∥ + ∥(1 − θ)y∥ = ∣θ∣∥x∥ + ∣(1 − θ)∣∥y∥ = θ∥x∥ + (1 − θ)∥y∥,

where the �rst inequality stems from the triangle inequality, while the second
and the third stem from the properties of norms and the fact that θ ∈ [0,1] ∎

Example 1.2.2. Least squares problem:

Consider function f ∶ IRd ↦ IR, f(x) = ∥Ax−b∥2
2, where A ∈ IRm×d, b ∈ IRm.

We want to show that f(x) = ∥Ax − b∥2
2 is convex.

The L2 norm can be written as

∥x∥2 =
√
xTx. (1.8)
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Proceeding from (1.8), we can rewrite the least squares problem as

f(x) = (Ax − b)T (Ax − b) = (Ax)TAx − 2bTAx + bT b
= xTATAx − 2bTAx + bb.

Noting that f(x) is actually a quadratic function, it su�ces to show that
(1.2) holds. The Hessian of f(x) is given by

∇2f(x) = ATA,

which is a positive semi-de�nite matrix (exercise), therefore satisfying (1.2).
This completes the proof.

Alternatively, we can use the rules of convexity to show that the least
squares problem is a concatenation of an a�ne and a convex function. We
start by de�ning g ∶ IRd ↦ IRm as g(x) = Ax + b, for A ∈ IRm×d and b ∈ IRm.
Obviously, g is an a�ne function. Next, we analyze the function f ∶ IRm ↦ IR,
given by f(x) = ∥x∥2

2. Using (1.8) once more, we can see that f is of the form

f(x) = xTx.

It is obvious that f is a quadratic function and its Hessian is the iden-
tity matrix, I (exercise). Since I ⪰ 0, we know that f is a convex function.
Therefore, our original function h(x) = ∥Ax + b∥2

2 can be expressed as a con-
catenation of an a�ne ( g(x) ) and a convex function ( f(x) ). By the
previously de�ned rules, this makes h(x) = f(g(x)) a convex function ∎

Example 1.2.3. Maximal eigenvalue of symmetric matrices:

De�ne f ∶ Sn ↦ IR, as f(X) = λmax(X), where Sn represents the set of
symmetric n × n matrices, and λmax(⋅) denotes the maximal eigenvalue of a
given matrix.

Recall that symmetric matrices have real eigenvalues and are diagonaliz-
able (exercise). Therefore, it can be shown that we can compute the maximal
eigenvalue of a symmetric matrix as (see, e.g., [5])

λmax(X) = max
Q={q∈IRn∶∥q∥2=1}

qTXq. (1.9)

Consider the function ϕq ∶ Sn ↦ IR, de�ned as ϕq(X) = qTXq = ∑n
i,j=1Xijqiqj,

where q ∈ IRn. We can note that ϕq is a�ne in X. Moreover, λmax(X) can
be represented as

λmax(X) = max
Q

ϕq(X).
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Using the fact that ϕq(X) is a�ne (and therefore convex) in X, and going
back to the rules of convexity, we can conclude that λmax(X) is a convex
function, as it represents a pointwise maximum of convex functions ∎

The main sources used for writing this chapter are [1, 4].



Chapter 2

Subgradient methods

This chapter addresses how to develop �rst order optimization algorithms
for convex functions that are not di�erentiable. The chapter introduces the
concept of subgradient, subdi�erential, a basic subgradient method, and its
inexact variant. This is mainly standard material covered in, e.g., [7, 8, 9,
10], complemented with inexact methods [11]. Here, we primarily closely
follow [9, 10].

2.1 Subgradients and ε-subgradients

Gradient-like methods are lauded for their simplicity and e�ciency, which
is well-established, especially for convex, di�erentiable functions. A typical
gradient-like iterative method for solving problems of the type

min
x∈IRd

f(x), (2.1)

has the following form

xk+1 = xk − αk∇f(xk), (2.2)

where xk represents the current estimate, xk+1 the next estimate, αk the
chosen step-size and k the iteration counter.

It is of interest to develop gradient-like methods for functions that are
convex, but not necessarily di�erentiable. As it turns out, it is possible to
generalize the concept of gradients to convex, non-di�erentiable functions.
This concept is called subgradient, see for example, [9, 3, 2], and it is used as
a search direction in methods of the type (2.2).

To motivate the de�nition of subgradients, recall the convexity condition

11



12 CHAPTER 2. SUBGRADIENT METHODS

(1.1). For di�erentiable functions, a condition equivalent to (1.1) is given by

f(y) ≥ f(x) +∇Tf(x)(y − x), for all x ∈ IRd, (2.3)

for any �xed y ∈ IRd. Using (2.3), we de�ne the subgradient as follows [9].

De�nition 2.1. Consider a convex, not necessarily di�erentiable function
f ∶ IRd ↦ IR. We say that gf(x) ∈ IRd is a subgradient of f at point x, if

f(y) ≥ f(x) + (gf(x))T (y − x), for all y ∈ IRd. (2.4)

A notion tied with subgradient is that of subdi�erential. Formally, a
subdi�erential is de�ned as follows.

De�nition 2.2. The subdi�erential ∂f(x) of function f at point x is the set
of all subgradients of f at x.

Before further characterizing the subdi�erential, let us recall the following
properties of sets.

De�nition 2.3. A set S ⊂ IRd is said to be open if for any point x ∈ S, there
exists a ball Bε(x) = {y ∈ IRd ∶ ∥y − x∥ < ε}, such that Bε(x) ⊂ S.

De�nition 2.4. A set S ⊂ IRd is said to be closed if its complement, S̄ =
IRd ∖ S, is open.

De�nition 2.5. A set S ⊂ IRd is said to be convex if

θx + (1 − θ)y ∈ S,

for any θ ∈ [0,1] and any x, y ∈ S.

We state the following two propositions without proof; see for example [9].

Proposition 2.1. For any convex function f ∶ IRd ↦ IR the subdi�erential
∂f at any point x ∈ IRd is a non-empty, closed, convex set.

Proposition 2.2. For any convex function f ∶ IRd ↦ IR and any point x ∈ IRd,
the following holds:

1. If f is di�erentiable at x, then ∂f(x) = {∇f(x)}, i.e., the subdi�erential
is a singleton set with the unique element ∇f(x).

2. If ∂f(x) = {gf(x)}, for some gf(x) ∈ IRd, then f is di�erentiable at x
and ∇f(x) = gf(x).
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Example 2.1.1. Absolute value:

Consider a function f ∶ IR↦ IR, given by f(x) = ∣x∣.
Recall that f is di�erentiable everywhere, except at 0. Therefore, we can

conclude that:

∂f(x) = { 1 if x ≥ 0
−1 if x < 0

Using (2.5), it can be shown that 0,±1 ∈ ∂f(0) (exercise). Moreover, it
can be shown that ∂f(0) ∈ [−1,1].

With numerical optimization methods for nondi�erentiable convex func-
tions, a useful concept is that of ε-subgradients (inexact subgradients), e.g.,
[11].

De�nition 2.6. Consider a convex, not necessarily di�erentiable function
f ∶ IRd ↦ IR, and let ε be a positive scalar. We say that gf(x) ∈ IRd is an
ε-subgradient of f at point x, if

f(y) ≥ f(x) + (gf(x))T (y − x) − ε, for all y ∈ IRd. (2.5)

2.2 Subgradient calculus

Informally, subgradient calculus represents a set of rules on how one can
calculate subgradients and subdi�erentials. The subgradient calculus may
be divided into the following two categories [9]:

� Weak calculus, that corresponds to calculation of a (single) subgra-
dient gf(x) of a function f at point x.

� Strong calculus, that corresponds to calculation of the (full) subdif-
ferential ∂f(x) of a function f at point x.

Remark. Recall the gradient-type algorithms of the form (2.2). In the case
of non-di�erentiable functions, the update rule (2.2) changes to

xk+1 = xk − αkgf(xk),

where gf(xk) is any subgradient of f at xk. Since any subgradient from the
subdi�erential set can be used here, the weak calculus can be considered to
be more relevant in terms of numerical algorithms de�nition and implemen-
tation.



14 CHAPTER 2. SUBGRADIENT METHODS

We next introduce some properties of subgradients.

1. Scaling: Let f ∶ IRd ↦ IR and α ≥ 0, then

∂[αf(x)] = α∂f(x) = {αg ∶ g ∈ ∂f(x)}.

2. Summation: Let fi ∶ IRd ↦ IR, i = 1,2, f1, f2 convex. Then

∂[f1 + f2](x) = ∂f1(x) + ∂f2(x) = {g + h ∶ g ∈ ∂f1(x), h ∈ ∂f2(x)}.

We state and prove a �weaker� version of the summation rule above.

Claim 2.3. If g ∈ ∂f1(x) and h ∈ ∂f2(x), fi ∶ IRd ↦ IR, i = 1,2, then

g + h ∈ ∂[f1 + f2](x),

for any x ∈ IRd.

Proof. Fix a point x ∈ IRd. Because g ∈ ∂f1(x), we know that (2.5) holds for
g and f1 at x. For the same reasons, (2.5) holds for h and f2 at x. Summing
up the inequalities, we obtain

f1(y) + f2(y) ≥ f1(x) + f2(x) + (g + h)T (y − x), (2.6)

for all y ∈ IRd. From (2.6) it follows that g+h ∈ ∂[f1+f2](x), which is exactly
what we wanted to show

The summation property of subgradients and subdi�erentials can also be
generalized for m functions, instead of just two.

3. Pointwise maximum: Let fi ∶ IRd ↦ IR, i = 1, . . . ,m, fi, i = 1, . . . ,m
convex. De�ne f(x) = maxi=1,...,m fi(x). It is easy to note that f(x) is a
convex function, therefore subgradients of f exist at any point x ∈ IRd. We
will apply the weak and strong calculus to compute the subgradients and
subdi�erentials of f .

Weak calculus for pointwise maximum: A subgradient gf of f at point
x can be computed as any subgradient gfi(x) of function fi at x, such that
f(x) = fi(x). In other words, for an arbitrary point x, we �rst �nd the
�active function� as i = arg maxi=1,...,m fi(x) and any subgradient of fi at x is
simultaneously a subgradient of f at x.
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Example 2.2.1. Absolute value:

Recall the absolute value function from example (2.1.1). The absolute
value function can equivalently be represented as

f(x) = max{f1(x), f2(x)},

where f1(x) = x, f2(x) = −x. Note that both fi, i = 1,2 are convex (and
di�erentiable), therefore (sub)gradients are de�ned everywhere. We can use
the weak calculus for pointwise maximum to compute subgradients of the
absolute value function f .

For example, at the point x = 1, f1(1) = 1, f2(1) = −1, so we can conclude
that f1 is the active function. Using the weak calculus, a (sub)gradient of f
at x = 1 is a (sub)gradient of f1 at x = 1. Since f1 is di�erentiable, it is easy
to note that, gf1(1) = 1. Therefore, gf(1) = 1. Similarly, at x = 0 we have
f1(0) = f2(0) = 0. Since both f1 and f2 are active at x = 0, as per the weak
calculus rule, one can take both the (sub)gradient of f1, being gf1(0) = 1, or
the (sub)gradient of f2, being gf2(0) = −1, as the subgradient of f at x = 0 ∎

Some further rules on weak and strong subgradient calculus can be found,
e.g., in [9].

2.3 Subgradient and inexact subgradient meth-

ods

In the case of convex, not necessarily di�erentiable f , one can utilise subgradient-
based iterative methods of the form [10]

xk+1 = xk − αkgk, (2.7)

k = 0,1, . . ., where αk ≥ 0 is the step-size and gk is any subgradient of f
at xk. The iterative algorithm is usually initialized at an arbitrary point
x0 ∈ IRd. We will focus mainly on the constant step-size choice, αk = α > 0.
See, e.g., [10], for several alternative step-size choices. In (2.7), an (exact)
subgradient can be replaced with an ε-subgradient (an inexact subgradient),
yielding an inexact subgradient method. Under certain conditions, inexact
subgradient methods are close in performance to exact subgradient methods,
as described ahead. As considered in Chapter 5, inexact (centralized) sub-
gradient methods are very useful in the analysis of distributed subgradient
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methods.
In the following subsections, we will state the conditions and assump-

tions needed for algorithms of type (2.7) to converge, as well as perform the
convergence analysis for various step-size choices.

2.3.1 Optimality conditions for unconstrained minimiza-

tion

Recall the problem (2.1). For a convex, di�erentiable f , it is a well known
fact, e.g., [8], that, for a solvable problem of unconstrained minimization of
function f , the following holds.

∇f(x∗) = 0 ⇐⇒ inf
x∈IRd

f(x) = f(x∗). (2.8)

When f is convex, but not necessarily di�erentiable, the equivalence (2.8)
becomes

0 ∈ ∂f(x∗) ⇐⇒ inf
x∈IRd

f(x) = f(x∗). (2.9)

The goal of iterative algorithms of type (2.7) is to converge to a point x∗

(or its neighborhood) that satis�es (2.9).

2.3.2 Analysis of exact and inexact subgradient meth-

ods

A set of assumptions commonly used for the convergence of subgradient-
based methods is as follows [10]:

1. Existence of a minimum:

f∗ ∶= inf
x∈IRd

f(x) > −∞.

2. Existence of a minimizer:

f∗ = f(x∗),

for some x∗ ∈ IRd.

3. Bounded subgradients:

There exists a constant G ∈ [0,+∞) such that

∥gf(x)∥ ≤ G, for all gf(x) ∈ ∂f(x),
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for all x ∈ IRd.

4. Bounded distance from the solution set:

∥x0 − x∗∥ ≤ R, for all x∗ ∈X∗ = {y∗ ∶ f(y∗) = f∗},

for some constant R ∈ [0,+∞).

De�ne fkbest as
fkbest = min

i=0,...,k
f(xi), (2.10)

and let f̄ ∶= limk→∞ fkbest. It can be shown that (see [10] for the derivation):

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2αk(f∗ − f(xk)) + ∥αkgk∥2, (2.11)

with x∗ being any solution, and f∗ = f(x∗). The latter inequality can be
shown to yield:

fkbest − f∗ ≤
∥x0 − x∗∥2 +∑k

i=0(αi)2∥gi∥2

2∑k
i=0α

i
. (2.12)

Next, consider the constant step size αk = α > 0. Using the bounded
subgradients and distance from the solution set assumptions in (2.12), we
get

fkbest − f∗ ≤
R2 + α2G2(k + 1)

2α(k + 1)
= R2

2α(k + 1)
+ αG

2

2
. (2.13)

From (2.13), we can conclude that

lim
k→∞

(fkbest − f∗) ≤
αG2

2
, (2.14)

or that, using a �xed step-size, the subgradient method converges to a �xed
neighborhood of the solution.

Remark. Recall the inequality (2.11). We can interpret it as follows: assum-
ing the step-size αk is small, a crude approximation of (2.11) is the following

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2αk(f∗ − f(xk)).

This roughly means that, if we are su�ciently away from the solution set,
the distance of the iterate to any solution is decreasing.

Remark. Note that inequality (2.14)depends on α. It is possible to converge
to an arbitrary neighborhood of a solution, by choosing a su�ciently small
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α. However, this comes at the cost of slower convergence of the algorithm
towards its plateau.

Finally, when we replace the exact subgradient with an ε-subgradient
in the constant step size subgradient method, it can be shown that (2.13)
changes into (see, e.g., [11], for a related analysis):

fkbest − f∗ ≤
R2

2α(k + 1)
+ αG

2

2
+O(ε), (2.15)

where O(⋅) stands for the �big-O� notation.
The main sources used for writing this chapter are [9, 10, 11].



Chapter 3

Duality

This Chapter introduces basic concepts from the (Lagrangian) duality the-
ory, including some standard weak and strong duality results. The topic is
covered, e.g., in [3, 2, 12, 4]. Here, we follow closely [4].

3.1 Introduction

The (Lagrangian) duality theory is very useful in developing dual decomposi-
tion and dual distributed methods, as studied in Chapter 4. In this Chapter,
we provide a review of basic concepts from the duality theory.

We �rst review basic concepts regarding formulation of constrained opti-
mization problems. Consider a problem of the form

min f(x)
hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . ,m

x ∈ X

, (3.1)

where f ∶ IRd ↦ IR is called the objective (cost) function, hi ∶ IRd ↦ IR,
i = 1, . . . , p are called the equality constraints, gj ∶ IRd ↦ IR, j = 1, . . . ,m are
called the inequality constraints, while the set X is a non-empty, closed set.
We de�ne

h(x) ∶= (h1(x), . . . , hp(x))
T

g(x) ∶= (g1(x), . . . , gm(x))T
.

It is known that the optimization problem (3.1) is convex if the objective

19
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function f is convex, and the constraint set

S = {x ∈ IRd ∶ hi(x) = 0, i = 1, . . . , p, gj(x) ≤ 0, j = 1, . . . ,m, x ∈ X}

is a convex set [1]. Note that S can also be written as

S =
p

⋂
i=1

{x ∈ IRd ∶ hi(x) = 0}⋂ (
m

⋂
j=1

{x ∈ IRd ∶ gj(x) ≤ 0})⋂X .

Recall that the set S is called the feasible set. We next analyze the convexity
of S.

To begin with, we analyze the set {x ∈ IRd ∶ g(x) ≤ 0}, where g is an
arbitrary convex function. Take any two points x, y ∈ IRd, such that g(x) ≤
and g(y) ≤ 0, and an arbitrary constant θ ∈ [0,1]. Then

g(θx + (1 − θ)y) ≤ θg(x) + (1 − θ)g(y) ≤ (θ + (1 − θ))0 = 0, (3.2)

where the �rst inequality comes from the convexity of g, while the second
comes from the fact that both x and y satisfy g(⋅) ≤ 0. From (3.2), we can
conclude that θx + (1 − θ)y ∈ {x ∈ IRd ∶ g(x) ≤ 0}, therefore, the said set is
convex, for a convex g.

Next, consider the set {x ∈ IRd ∶ h(x) = 0}. For example, choosing h to

be h(x) = ∥x∥2 − 1, one can show that the set {x ∈ IRd ∶ h(x) = 0} does not
have to be convex, even if h is a convex function (exercise). The proof of the
following proposition is left for exercise.

Proposition 3.1. Consider the set H = {x ∈ IRd ∶ h(x) = 0}. Then, if h is
an a�ne function, H is a convex set.

From the analysis above, we can conclude that the problem (3.1) is a
convex problem if:

1. f is a convex function,

2. hi is an a�ne function, for all i,

3. gj is a convex function, for all j,

4. X is a convex set.

In terms of the duality theory, problems of the form (3.1) are called
primal problems. Consider a primal problem of the form (3.1), not necessarily
convex. We de�ne the Lagrangian function in the following way.
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De�nition 3.1. For a primal problem of the form (3.1), the Lagrangian
function L ∶ IRd × IRp × IRm ↦ IR is given by

L(x,λ,µ) = f(x) + λTh(x) + µTg(x). (3.3)

Using the Lagrangian function (3.3) of the primal problem (3.1), one can
de�ne the dualfunction as follows.

De�nition 3.2. Consider the Lagrangian function (3.3) of the problem (3.1).
The dual function D ∶ IRp × IRm ↦ IR is given by

D(λ,µ) = inf
x∈X
L(x,λ,µ). (3.4)

Using the dual function (3.4), one can formulate the dual problem of (3.1),
as follows.

De�nition 3.3. Given the primal problem (3.1), one can formulate the dual
problem as

max
λ∈IRp,µ∈IRm

D(λ,µ)

s.t. µ ≥ 0
, (3.5)

where the inequality µ ≥ 0 is point-wise (µi ≥ 0, for all i = 1, . . . ,m).

The following proposition states the concavity property of the dual func-
tion (3.4).

Proposition 3.2. The dual function (3.4) is concave.

Proof. Recall that the dual function is given by

D(λ,µ) = inf
x∈X
L(x,λ,µ) = inf

x∈X
{f(x) + λTh(x) + µTg(x)}.

De�ne φx(λ,µ) as

φx(λ,µ) = f(x) + λTh(x) + µTg(x).

It is easy to observe that φx(λ,µ) is a�ne in (λ,µ). Therefore, the dual
function

D(λ,µ) = inf
x∈X

{φx(λ,µ)}

represents a point-wise in�mum of a�ne functions. Recalling the pointwise
supremum rule for convexity � see, e.g., [9], one can conclude that D is a
concave function
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Remark. From proposition 3.2 and the de�nition of the dual problem (3.5), we
can conclude that the dual problem is always convex, regardless of convexity
of (3.1).

3.2 Weak Duality

Recall the primal and dual problems, (3.1) and (3.5) respectively. Weak dual-
ity characterizes the relationship between the primal and the dual problems.
To begin with, we de�ne primal and dual feasibility.

De�nition 3.4. For a point x ∈ IRd, we say it is primaly feasible with respect
to (3.1), if it satis�es the imposed constraints, i.e. it holds that h(x) = 0,
g(x) ≤ 0, x ∈ X .

De�nition 3.5. For a point µ ∈ IRm, we say it is dualy feasible with respect
to (3.5), if it satis�es the imposed constraints, i.e. it holds that µ ≥ 0.

Theorem 3.3. For any x ∈ IRd that is primal feasible (h(x) = 0, g(x) ≤ 0,
x ∈ X ) and for any λ ∈ IRp and any µ ∈ IRm that are dual feasible (µ ≥ 0), it
holds:

1. D(λ,µ) ≤ f(x),

2. d∗ = sup{(λ,µ)∈IRp×IRm∶µ≥0}D(λ,µ) ≤ p∗ = inf{x∈IRd∶h(x)=0, g(x)=0, x∈X} f(x).

Proof. We �rst prove the statement 1. Pick any dual feasible point (λ,µ).
We have

D(λ,µ) = inf
x∈X

{f(x) + λTh(x) + µTg(x)} ≤ f(x) + λTh(x) + µTg(x). (3.6)

Recall that x is a primal feasible point. From there, it directly follows
that h(x) = 0 and g(x) ≤ 0. Combining this fact with the fact that (λ,µ)
is dual feasible, it follows that µTg(x) = µ1g1(x) + . . . µmgm(x) ≤ 0, as each
component is a product of a positive and a negative number. Using these
facts in (3.6), we can conclude that

D(λ,µ) ≤ f(x), (3.7)

which is exactly what we wanted to prove. For the statement 2., we use the
claim that was just proved. Observe (3.7), and take the supremum over all
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the dual feasible points over the left-hand side as well as the in�mum over
all the primal feasible points over the right-hand side. We get

sup
{(λ,µ)∈IRp×IRm∶µ≥0}

D(λ,µ) ≤ inf
{x∈IRd∶h(x)=0, g(x)=0, x∈X}

f(x),

which is exactly what we wanted to prove

Remark. Note from the previous proposition that p∗ − d∗ ≥ 0. We call the
quantity p∗ − d∗ the duality gap. The duality gap is a measure of how well
the dual problem �approximate� the primal problem. If the duality gap is
zero, we can use the dual problem to obtain the exact optimal value of the
primal problem.

3.3 Strong Duality

Informally, strong duality speci�es a set of conditions for which we can recover
the solution of the primal problem (3.1) by solving the dual problem (3.5).
Recall the duality gap, p∗−d∗. If the duality gap is zero, and some additional
conditions are satis�ed, the primal solution can be reconstructed by solving
the dual problem. In what follows, the conditions for which strong duality
holds will be characterized more formally.

We consider convex problems of a general form, where the a�ne eqaulity
constraints are subsumed within the overall constraint set, under the in-
equality constraints (obviously, one can always represent an equality by a
non-strict inequality). The problems that we consider in this section are
given by

min f(x)
Ax ≤ b
x ∈ X

, (3.8)

where f ∶ IRn ↦ IR is a convex function, X is a closed, convex set, A ∈ IRm×n,
b ∈ IRm and the inequality is element-wise. The Lagrangian of (3.8) is given
by

L(x,µ) = f(x) + µT (Ax − b),

while the dual function is given by

D(µ) = min
x∈X

f(x) + µT (Ax − b).
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We can therefore formulate the dual problem as

max
{µ∈IRm∶µ≥0}

D(µ). (3.9)

Before we formally state the conditions for strong duality, and the prop-
erties of thereof, some de�nitions are in order.

De�nition 3.6. For a point x ∈ IRd, a ball centered at x, with a radius ε > 0
is given by

B(x, ε) = {y ∈ IRd ∶ ∥x − y∥ < ε},

where ∥ ⋅ ∥ is any norm on IRd.

Remark. In general, we will work with L2-de�ned balls, unless stated other-
wise.

De�nition 3.7. An a�ne hull of a given set S ⊆ IRd is the set

aff(S) = {α1x1 + . . . +αrxr ∶ αi ∈ IR, xi ∈ S, i = 1, . . . , r,
r

∑
i=1

αi = 1, r = 1,2, . . .}.

(3.10)

De�nition 3.8. The relative interior of a set S ⊆ IRd is the set

rel.int.(S) = {x ∈ S ∶ ∃ε > 0 s.t. B(x, ε) ⋂ aff(S) ⊆ S}.

A key condition for strong duality to hold is the Slater's condition. Recall
the problem (3.8). The condition is stated as follows.

Slater's condition. There exists a point x0 ∈ rel.int.(X ) such that Ax0 ≤ b.

Remark. When X ≡ IRn, it holds that rel.int.(X ) ≡ IRn (exercise). In this
case, the Slater's condition reduces to the following: there exists a point
x0 ∈ IRn such that Ax0 ≤ b. In other words, the Slater's condition requires
the existance of (at least one) feasible point in this case.

We are now ready to state the strong duality claim, e.g., [4]. .

Claim 3.4. Consider the problem (3.8). Assume that the Slater's condition
holds. Then, the following is true:

1. p∗ = d∗ (zero duality gap)

2. Moreover, if p∗ = d∗ ∈ (−∞,+∞) then the dual problem (3.9) is solvable,
that is, there exists a µ∗ ≥ 0, such that d∗ = supµ≥0D(µ) = D(µ∗).
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Recall the (strict) convexity de�nition (1.1). If a function is strictly con-
vex, the following claim holds, e.g., [4].

Claim 3.5. If, in addition to the conditions from the previous claim, f is
strictly convex, then

x∗ = arg min
x∈X

{f(x) + (µ∗)T (Ax − b)},

where µ∗ ≥ 0 is dual solution.

3.4 Dual subgradient method

Consider the problem

min f(x)
Ax = b
x ∈ X

, (3.11)

where f ∶ IRn ↦ IR is a strictly convex function, X is a compact, convex set,
A ∈ IRm×n, b ∈ IRm and the strong duality is assumed to hold true. We can
de�ne the Lagrangian of (3.11) as

L(x,λ) = f(x) + λT (Ax − b),

the dual function as

D(λ) = min
x∈X

{f(x) + λT (Ax − b)},

and state the dual problem as

max
λ∈IRm

D(λ). (3.12)

Recall that D is a concave function, and that the problem (3.12) is equiv-
alent to

min
λ∈IRm

−D(λ). (3.13)

Since −D is a convex function, we can apply the subgradient method (2.7)
to solve the problem (3.13). Denoting −gk ∈ ∂(−D(λk)), we get the following
rule for solving (3.13) (and consequently (3.12) as well)

λk+1 = λk + αgk.
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We are left with the question of how to calculate a subgradient of −D.
For a �xed λk we need to �nd an �active� function, that is

x∗(λk) = xk+1 = arg min
x∈X

{f(x) + (λk)T (Ax − b)}.

Then, we can calculate the subgradient as gk = Axk+1 − b.
In summary, the dual subgradient method works as follows. For k =

0,1,2, . . .

xk+1 = arg min
x∈X

{f(x) + (λk)T (Ax − b)}

λk+1 = λk + α(Axk+1 − b)
. (3.14)

In many cases, it is easier to apply the dual subgradient method to solve
(3.12), rather than solve (3.11) directly.

The main sources for writing this chapter are [4, 1, 2].



Chapter 4

Dual distributed methods

This Chapter introduces a commonly studied distributed optimization model,
as well as some commonly studied corresponding communication models, and
it presents a dual subgradient method for the studied setup. The Chapter
considers commonly used models, techniques, and results, see, e.g., [12, 14,
15, 16, 17], for related more advanced materials. We also provide some
application examples for distributed optimization in Section 4.4. This Section
is mainly taken practically unaltered from the PhD thesis [18].

4.1 Introduction

So far, we assumed that all the components of the optimization problem
(e.g., objective functions, constraints) are available at a single location. For
instance, consider the least squares example (1.2.2). In terms of the problem
components, we have the matrix A and the target vector b. In a standard
machine learning setting, the matrix A would be the data matrix, whereas
the vector b would be the vector of target values, i.e., the values that we want
the model to learn.

In the era of Big data, it is fairly common for the data to be gathered
and stored at multiple points (e.g. sensors, computers), rather than having a
single storage and computation point. Various examples where this scenario
is relevant include large scale machine learning [19], [20], [21], distributed
inference in sensor networks [22], as well as distributed target localization,
spectrum cartography in cognitive radio (CR) networks, �ow control in com-
munication networks [23], to name a few. This, as well as the structure of
problems (e.g. in large-scale machine learning) has given rise to distributed
computational models, where distributed optimization plays an important
role. It is worth noting that distributed computation and optimization has

27
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a long history; see, e.g., [12].

4.2 Computation model

Recall that a standard optimization model is of the form

min f(x)
hi(x) = 0, i = 1, . . . , p

gj(x) ≤ 0, j = 1, . . . , q

x ∈ X

.

A problem that is suitable for decomposition, i.e. distributed computing,
has the following form

min
x∈IRd

f1(x) + f2(x) + . . . + fN(x), (4.1)

where fi ∶ IRd ↦ IR, fi strictly convex, for all i = 1, . . . ,N .

Remark. A condition that is milder can be introduced, while the analysis here
would continue to hold. Instead of requiring that all fi's be strictly convex, it
su�ces that all fi's are convex, while at least one of them is strictly convex.

The cost function of the form (4.1) appears in many applications (many
of them listed above), e.g., in machine learning.

Example 4.2.1. Least squares problem:

Recall the least squares example (1.2.2). Assume that the data matrix
A ∈ IRNm×d has the following structure

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

⋮
AN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where each Ai ∈ IRm, i = 1, . . . ,N , and similarly, the target vector b ∈ IRNm

has the following structure

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

⋮
bN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
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where each bi ∈ IRm. Denote the cost function as f ∶ IRd ↦ IR, and recall its
form, f(x) = ∥Ax − b∥2.

Using the speci�c structure of the data matrix and the target vector, we
can write the cost function as follows

f(x) = ∥Ax − b∥2 = ∥

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1x − b1

A2x − b2

⋮
ANx − b2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∥2 =
N

∑
i=1

∥Aix − bi∥2, (4.2)

where the third equality stems from the structure of the data matrix and
target vector, and the de�nition of the L2 norm (exercise). If we de�ne
fi ∶ IRd ↦ IR as fi(x) = ∥Aix− bi∥2, it is clear that we can represent (4.2) as a
sum of N functions:

f(x) = ∥Ax − b∥2 =
N

∑
i=1

∥Aix − bi∥2 =
N

∑
i=1

fi(x) ∎

4.3 Communication models

In order to capitalize on the speci�c structure of the data, as well as the cost
function, communication models that de�ne how distributed computation
and information propagation is performed need to be introduced.

To begin with, in distributed optimization, a communication model is
often represented as a graph1 G = (V ,E), where V is the set of vertices (repre-
senting nodes or agents in our model), while E is the set of edges (representing
communication links in our model). An obvious requirement for all the com-
munication models is that the underlying graph is connected. This condition
stems, e.g., from the information propagation and consensus requirements,
to be discussed soon.

Some common communication models in distributed optimization settings
are the following:

� Master-worker model. The master-worker framework is represented
by an underlying star graph. In short, the master node is the central
node, connected to all the other nodes. It usually holds a copy of the
solution to the problem of interest, performs updates, and in some cases

1Depending on the settings, the underlying graph can be both directed and undirected.
In this book, we will consider only the communication models modeled as undirected
graphs; fore more on distributed optimization over directed graphs, the reader is refered
to [24], [25], [26] and the references therein.
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has a chunk of the data and performs a part of the computation itself.
Worker nodes are the nodes where the data is stored. At each iteration,
they receive the current solution estimate from the master node, and
their main goal is to perform computation (e.g., compute the gradient)
based on the solution estimate, and send the information back to the
master node, where the updates are performed.

� Fully distributed model. This communication model is represented
by a generic connected graph, such that usually no vertex is connected
to all the other vertices (i.e., no agent can communicate with all the
other agents in the network). Each agent can communicate only with
its direct neighbors. Each agent contains a chunk of the data. The
goal of each agent is to iteratively minimize the global cost function
based on its local data, while simultaneously achieving consensus on
the solution estimate with other agents in the network. The graph
may be undirected or directed, while here we study the undirected
graphs case.

4.4 Application examples

We now give several examples of problem (6.1) relevant in applications.

Example 1: Consensus. We explain consensus in the context of sensor
networks, but many other contexts, e.g., social networks, are possible. Let
N be deployed in a �eld; each sensor acquires a scalar measurement di, e.g.,
temperature at its location. The goal is for each sensor to compute the
average temperature in the �eld: 1

N ∑
N
i=1 di. Consensus can be cast as (6.1)

by setting fi(x) = 1
2(x − di)2.

Example 2: Distributed learning: linear classi�er. For concrete-
ness, we focus on linear classi�cation, but other distributed learning problems
�t naturally (6.1). Training data (e.g., data about patients, as illustrated
in [15]) is distributed across agents in the network (di�erent hospitals); each
agent has Ns data samples, {aij, bij}Nsj=1, where aij ∈ Rm is a feature vec-
tor (patient signature � blood pressure, etc) and bij ∈ {−1,+1} is the class
label of the vector aij (patient healthy or ill). For the purpose of future
feature vector classi�cations, each agent wants to learn the linear classi�er
a ↦ sign (a⊺x′ + x′′), i.e., to determine a vector x′ ∈ Rm and a scalar x′′ ∈ R,
based on all agents' data samples, that makes the best classi�cation in a cer-
tain sense. Speci�cally, we seek x′ ∈ Rm and x′′ ∈ R that minimize a convex
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surrogate loss with respect to x = ((x′)⊺, x′′)⊺:

minimize ∑N
i=1∑Ns

j=1 φ (−bij(a⊺ijx′ + x′′)) + λR(x′) . (4.3)

Here φ(z) is a surrogate loss function, e.g., logistic, exponential, or hinge
loss [27], λ > 0 is a parameter, and R(x′) is the regularization, e.g., l1 norm
or quadratic. Problem (4.3) �ts (6.1), with fi(x) ∶= ∑Ns

j=1 φ (−bij(a⊺ijx′ + x′′))+
λ
NR(x′).

Example 3: Acoustic source localization in sensor networks. A
sensor network instruments the environment where an acoustic source is po-
sitioned at an unknown location θ ∈ R2, e.g. [28]. The source emits signal
isotropically. Each agent (sensor) i measures the received signal energy:

yi =
A

∥θ − ri∥β
+ ζi.

Here ri ∈ R2 is agent i's location, known to agent i, A > 0 and β > 0 are
constants known to all agents, and ζi is zero-mean additive noise. The goal is
for each agent to estimate the source's position θ. A straightforward approach
is to �nd the nonlinear least squares estimate θ = x⋆ by minimizing the
following cost function (of the variable x):

minimize ∑N
i=1 (yi − A

∥x−ri∥β )
2
. (4.4)

Problem (4.4) is nonconvex and hence di�cult; still, it is possible to e�ciently
obtain a good estimator θ̂ based on the data yi, i = 1, ...,N , by solving the
following convex problem:

minimize 1
2 ∑

N
i=1 dist2 (x,Ci) , (4.5)

where Ci is the disk Ci = {x ∈ R2 ∶ ∥x − ri∥ ≤ (Ayi)
1/β

}, and dist(x,C) = infy∈C ∥x−

y∥ is the distance from x to the set C. In words, (4.6) �nds a point θ̂ that has
the minimal total squared distance from disks Ci, i = 1, ...,N. Problem (4.6)
�ts our framework (6.1) with fi(x) = 1

2dist2 (x,Ci) .
Example 4: Resource allocation in cognitive radio networks.

Consider a set of secondary users (cognitive radios CRs), connected in a
generic network topology, that want to allocate their resources (e.g., fre-
quency subchannels) by minimizing the interference towards the primary,
licenced users. Each CR i wants to allocate its resource xi ∈ Rd (e.g., d = 1
and xi is the frequency of a subchannel), so that the following three criteria



32 CHAPTER 4. DUAL DISTRIBUTED METHODS

are met: (1) minimize the interference that it experiences; (2) avoid collisions
in the resource domain with the neighboring CRs; and (3) the overall system
should avoid excessive spread of the total resources used by all CRs. The re-
source allocation problem can thus be modeled as the following optimization
problem:

minimize ∑N
i=1 Ji(xi) +∑{i,j}∈E aij(xi − xj)2 −∑{i,j}∈E rij log ((xi − xj)2) .

(4.6)
The term Ji(xi) is the overall interference power perceived by CR i; the
term −rij log ((xi − xj)2) (with rij > 0) is the repulsion term that penalizes
collision in the resource domain among the neighboring CRs i and j; and
aij(xi − xj)2 (aij > 0) is the attraction term that prevents from an exces-
sive spread of resources (too distant xi and xj.) The described resource
allocation mechanism has been proposed in [29] and is inspired by animal
swarms. Denote by x = (x1, ..., xN)⊺. Problem (4.6) �ts our framework with
fi(x) = Ji(xi)+∑j∈Oi

aij
2 (xi −xj)2 − rij

2 log ((xi − xj)2), though the problem is
nonconvex.

Example 5: Spectrum sensing for cognitive radio networks. Con-
sider N secondary users (CRs) connected by a generic network. The CRs
sense the power spectral density (PSD) to reconstruct the PSD map of pri-
mary users (PUs), i.e., the CRs want to determine at what physical locations
the PUs are present, and what frequencies they use; this example is studied
in [30]. The model assumes Np potential locations (a grid) of PUs; each
�potential� PU p has a power spectral density (PSD) expressed as:

Φp(f) =
Nb

∑
b=1

θbpΨb(f),

where f is the frequency, Ψb(f) is rectangle over interval b and θbp is a
coe�cient that says how much PSD is generated by the pth (potential) PU
in the frequency range b. The PSD at CR i is modeled as a superposition of
all potential PU's PSDs:

Φi(f) =
Np

∑
p=1

gipΦp(f) =
Np

∑
p=1

gip
Nb

∑
b=1

θbpΨb(f), (4.7)

where gip is the channel gain between PU p and CR i. Denote by θ the
vector that stacks all the θbp's. Each CR collects samples at frequencies fl,
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l = 1, ..., L, modeled as:

yi,l = Φi(fl) + ζi,l = hi,l(θ) + ζi,l,

where ζi,l is a zero-mean additive noise, and hi,l(θ) is a linear function of
θ. Reference [30] assumes that most of the coe�cients θbp are zero, i.e., the
vector θ is sparse. Hence, the spectrum sensing problem of determining the
vector x⋆ � an estimate of θ � is:

minimize ∑N
i=1∑L

l=1(hi,l(x) − yi,l)2 + λ∥x∥1. (4.8)

In framework (6.1), we now have fi(x) = ∑L
l=1(hi,l(x) − yi,l)2 + λ

N ∥x∥1.

Example 6: Distributed detection in sensor networks. Consider
N agents that face the binary hypothesis test H1 versus H0, e.g., [31]. Each
agent i, at each time k, acquires a sample yi(k), where, for i = 1,2, ...,N :

H1 ∶ yi(k) =mi + ζi(k), H0 ∶ yi(k) = ζi(k). (4.9)

Here, mi is a deterministic, time invariant signal, and ζi(k) is a spatio-
temporally i.i.d. zero-mean noise. Consider a hypothetical fusion center
that collects the measurements yi(k) from all agents i, at all times k. The
optimal centralized detector (that minimizes the Bayes error probability) is
the log-likelihood ratio test:

D(k) ∶= 1

N k

k

∑
t=1

N

∑
i=1

Li(t)
[
H0]H1≷γk, (4.10)

where γk is the test threshold, and Li(t) is the log likelihood ratio based on
the agent i's sample yi(t) at time t. We now give an optimization perspective
in the sense of (6.1) to describe the detection problem. The recursive update
of the centralized detector's decision variable D(k) can be written as:

D(k + 1) =D(k) − 1

k + 1
( 1

N

N

∑
i=1

(D(k) −Li(k + 1))) , (4.11)

which is a stochastic gradient algorithm with step-size 1/(k + 1) to solve the
following unconstrained quadratic stochastic optimization problem:

minimize f(x) ∶= 1

2

N

∑
i=1

E [(x −Li(k))2∣Hl] . (4.12)
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Namely, the term ( 1
N ∑

N
i=1(x −Li(k + 1))) is an instantaneous, stochastic

approximation of the gradient ∇f(x) = ∑N
i=1 E [x −Li(k)∣Hl]. Indeed, as

is well-known, under Hl, l = 0,1, D(k) converges almost surely to x⋆ ∶=
1
N ∑

N
i=1 E [Li(k)∣Hl] � the solution to (4.12). Note that (4.12) is an instance

of (6.1), with fi(x) ∶= 1
2E [(x −Li(k))2∣Hl] (assuming that hypothesis Hl is

true.)

The major part of this Section is taken practically unaltered from the
PhD thesis [18].

4.5 Dual distributed methods

In this section we analyze distributed methods for the problems of the form
(4.1), for the previously introduced communication models.

We start with the master-worker framework. Each node i ∈ {1, . . . ,N} is
assigned exactly one fi. First, the problem (4.1) is reformulated as follows;
see, e.g., [12, 4]. Each agent is assigned its own variable, xi, i = 1, . . . ,N . We
de�ne x = (xT1 , . . . , xTN)T ∈ IRNd and f ∶ IRNd ↦ IR, given by f(x) = ∑N

i=1 fi(xi).
The problem can then be stated as

min
x1=...=xN

N

∑
i=1

fi(xi). (4.13)

Note that the feasible set of (4.13) is S = {(xT , . . . , xT )T ∶ x ∈ IRd}. This
constraint is the consensus constraint, where we require all the agents to
agree on a solution, since the goal of the distributed system is that agents
collaboratively solve the joint problem.

Also note that the problems (4.1) and (4.13) are equivalent in the fol-
lowing sense. If x∗ ∈ IRd is the solution to (4.1), then (x∗T , . . . , x∗T )T is the
solution to (4.13). Conversely, if x̂ = (x̂T1 , . . . , x̂TN)T ∈ IRNd is the solution to
(4.13), then x̂1 = . . . = x̂N , and x̂1 is the solution to (4.1). We next reformulate
(4.13) to an equivalent form, given by

min
N

∑
i=1

fi(xi)

x1 = x2

x1 = x3

⋮
x1 = xN

, (4.14)
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and proceed to dualize the constraints, by associating the dual variable λ1j

with the constraint x1 = xj, j = 2, . . . ,N . Note that the problem (4.14) is
convex, as we assumed fi's are strictly convex, and the equality constraints
are a�ne. Since the Slater's condition is satis�ed (exercise), strong duality
holds as well.

Next, we form the Lagrangian of (4.14). The Lagrangian is formed as

L(x1, . . . , xN , λ12, . . . , λ1N) =
N

∑
i=1

fi(xi)+λT12(x1−x2)+. . .+λT1N(x1−xN). (4.15)

The dual subgradient method (3.14) can now be applied:

� Primal update:

xk+1 = (xk+1
1 , . . . , xk+1

N ) = arg min
(x1,...,xN )

L(x1, . . . , xN , λ12, . . . , λ1N).

� Dual update:

λk+1 = (λk+1
12 , . . . , λk+1

1N ) = λk + α∇λL(xk+1, λk),

where the subgradient with respect to λ is calculated at point λk, when
x is �xed, and equal to xk+1.

Grouping the variables in (4.15), we can reformulate it as

L(x,λ) = (f1(x1) + (λ12 + λ13 + . . . + λ1N)Tx1) + (f2(x2) − λT12x2) + . . .
+ (fN(xN) − λT1NxN).

(4.16)

De�ne next

φ1(x1) = f1(x1) + (λ12 + λ13 + . . . + λ1N)Tx1

φi(xi) = fi(xi) − λT1ixi
,

i = 2, . . . ,N , then the primal update is

(xk+1
1 , . . . , xk+1

N ) = arg min
(x1,...,xN )

[φ1(x1) + φ2(x2) + . . . + φN(xN)]. (4.17)
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Note that (4.17) is equivalent to

xk+1
1 = arg min

x1

φ1(x1)

xk+1
2 = arg min

x2

φ2(x2)

⋮
xk+1
N = arg min

xN

φN(xN)

. (4.18)

It is obvious that all the arg min operations in (4.18) can be done in
parallel. Similarly, using the formulation (4.17), we can perform the dual
update in parallel by noting

λk+1
12 = λk12 + α(xk+1

1 − xk+1
2 )

λk+1
13 = λk13 + α(xk+1

1 − xk+1
3 )

⋮
λk+1

1N = λk1N + α(xk+1
1 − xk+1

N )

. (4.19)

Observe that, while we have N primal variables, we only have N − 1 dual
variables. Also note that the construction of φ1(x1) (and consequently the
update of x1) requires the knowledge of all the dual variables, whereas φi(xi)
(and consequently the update of xi), i = 2, . . . ,N only require the knowledge
of the �local� dual variables. Therefore, in the master-worker framework, the
master is assigned x1, while each agent contains xi as well as λ1i, i = 2, . . . ,N .
The resulting master-worker dual method is summarized in algorithm 1.

Algorithm 1: A master-worker dual method

initialize x0
i ∈ IRd, i = 1, . . . ,N , λ0

1j ∈ IRd, j = 2, . . . ,N , α > 0;

for k = 0,1,2,. . . do
Agents j = 2, . . . ,N in parallel: send λk1j to master;

All in parallel: perform (4.18);
Master: send xk+1

1 to agents j = 2, . . . ,N ;
Agents j = 2, . . . ,N in parallel: perform (4.19);

end

We next consider the dual subgradient method from section 3.4, applied
to the computation model (4.1), with the underlying communication network
given by the fully distributed model.

The goal is to derive a fully distributed iterative method to solve (4.1),
based on the dual subgradient method, where nodes perform computations
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in parallel, and exchange information only across communication links (i.e.,
with their direct neighbors). To begin with, we �rst de�ne a neighborhood
of agent.

De�nition 4.1. The set of neighbors of agent i, in the fully distributed
communication model, is given by

Ni = {j ∈ V ∶ {i, j} ∈ E},

where G = (V ,E) represent the set of vertices and edges of the underlying
graph of the communication model.

Similarly to the master-worker framework, we use the reformulation (4.13)
of the original problem. However, unlike (4.14), we de�ne the consensus
constraints as follows, e.g., [12, ?]:

min
N

∑
i=1

fi(xi)

xi = xj, for all {i, j} ∈ E
. (4.20)

Note that (4.13) and (4.20) are equivalent. First, the feasible set of (4.20)
is given by S = {(xT1 , . . . , xTN)T ∈ IRNd ∶ x1 = x2 = . . . = xN}. It is easy to see
that if x∗ ∈ IRd is a solution to (4.13), then (x∗T , . . . , x∗T )T ∈ IRNd is a
solution to (4.20). Conversely, if (x̂T1 , . . . , x̂T )T ∈ IRNd is a solution of (4.20),
then x̂1 ∈ IRd is a solution of (4.13).

The Lagrangian of the problem (4.20) is given by

L(x,λ) =
N

∑
i=1

fi(xi) + ∑
{i,j}∈E, i<j

λTij(xi − xj), (4.21)

where x = (xT1 , . . . , xTN) ∈ IRNd, λ = (. . . λij . . .) ∈ IRMd and M = ∣E ∣. The
notation ∣ ⋅ ∣ refers to the set cardinality function. In general, we can write
(4.21) as

L(x,λ) =
N

∑
i=1

φi(xi), (4.22)

where φi(xi) is given by

φi(xi) = fi(xi) + xTi ( ∑
j∈Ni

λij sign(i − j)). (4.23)
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Here, sign ∶ IR↦ IR refers to the sign function, given by

sign(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if x > 0
0 if x = 0
−1 if x < 0

.

Recall the primal and dual updates (3.14) of the dual subgradient method.
We want to derive the dual subgradient based primal-dual updates for (4.22).
From (4.22) and (4.23) it can be seen that for a �xed xk+1, the gradient of L
with respect to λ at λk is given by (exercise)

∇λL(xk+1, λk) =
⎡⎢⎢⎢⎢⎢⎣

⋮
xk+1
i − xk+1

j

⋮

⎤⎥⎥⎥⎥⎥⎦
,

and therefore, the dual update for λij becomes

λk+1
ij = λk+1

ij + α(xk+1
i − xk+1

j ), (4.24)

for all {i, j} ∈ E . For the primal update, recalling (4.22) and (4.23), we can
conclude that each agent in parallel performs

xk+1
i = arg min

xi

fi(xi) + ( ∑
j∈Ni

λkij sign(j − i))Txi (4.25)

similarly to the master-worker framework. The fully distributed dual method
is summarized in algorithm 2. For analysis of related more advanced meth-
ods, see, e.g., [16, 17].

Algorithm 2: A fully distributed dual subgradient method

initialize x0
i ∈ IRd, λ0

ij ∈ IRd, j ∈ Ni, i = 1, . . . ,N , α > 0;

Agents i = 1, . . . ,N execute in parallel;
for k = 0,1,2,. . . do

Perform (4.25);
Send xk+1

i to neighbors j ∈ Ni;
Perform (4.24);

end



Chapter 5

Primal distributed subgradient

methods

This chapter considers a primal distributed subgradient algorithm in [14], see
also [12], and provides an analysis of the algorithm under a simpli�ed setting
with respect to reference [14].

5.1 Communication and computation model

To begin with, we specify the communication and computation models and
some basic assumptions.

The communication model used in [14] is the fully distributed model intro-
duced in section 4.3. The underlying network is represented by an undirected,
connected graph G = (V ,E). As was stated before, Ni is the neighborhood
set of agent i, i = 1, . . . ,N . For each agent i, we de�ne the set

N̄i = Ni ∪ {i},

which is the set of neighbors of i including i itself.

The assumed computational model is as follows:

min
x∈IRd

N

∑
i=1

fi(x). (5.1)

Each agent i has knowledge only of its local function fi ∶ IRd ↦ IR, which is
assumed to be convex.

39
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5.2 The weight matrix

Many distributed, consensus-based algorithms, e.g., [31], use a weight (con-
sensus) matrix. For a network of N agents, it represents a N ×N matrix,
whose key feature is to follow the network sparsity pattern.

More precisely, for a given network of N agents, a weight matrix W is a
N ×N square matrix, satisfying:

1. wij > 0, {i, j} ∈ E ,

2. wij = 0, {i, j} ∉ E , i ≠ j.

3. wii = 1 −∑j≠iwij > 0, i = 1, ...,N.

Here, E is the set of edges of the underlying graph G = (V ,E). We note
that not all of the above conditions are necessary, but we impose them all to
simplify exposition.

Informally, the weight matrix re�ects the trust of agent i in its own, as
well as its neighbors solutions. We make the following standard assumptions
about the weight matrix, used in convergence analysis.

Assumption 1. The weight matrix W is a symmetric, doubly stochastic
matrix. In other words, W T =W and W1 = 1, where 1 ∈ RN 2.

Some facts about the weight matrix follow.

� ∥W ∥ = 1.

� De�ne the N ×N matrix J by

J = 1

N
11T =

⎡⎢⎢⎢⎢⎢⎣

1
N . . . 1

N

⋮ ⋮
1
N . . . 1

N

⎤⎥⎥⎥⎥⎥⎦
.

Then, ∥W − J∥ < 1.

The intuition behind the second claim stems from the fact that J can
be considered as the �perfect� averaging matrix. However, since the graph
is sparse, we do not have access to such a weight assignment. If the graph
G is connected, and the assumptions above about W hold, then the second
claim is true and may be understood as follows: W is a �good enough�
approximation of J .

2While we simultaneously use 1 to denote both the scalar 1, as well as the vector of all
ones, it will be clear from the context which object is in force.
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5.3 The algorithm

We are now ready to describe the algorithm. Let xki be agent i's solution
estimate at iteration k. The next estimate is then computed as

xk+1
i = ∑

j∈N̄i

wijx
k
j − αgki , (5.2)

where gki is a (sub)gradient of fi evaluated at xki , i = 1, . . . ,N . A more
complete algorithm representation is presented in algorithm 3.

Algorithm 3: Distributed subgradient method

initialize x0
i ∈ IRd, i = 1, . . . ,N , α > 0;

Agents i = 1, . . . ,N execute in parallel;
for k = 0,1,2,. . . do

Send the current solution estimate xki to neighbors j ∈ Ni ;
Receive the neighbors solution estimates xkj , j ∈ Ni;
Compute a subgradient gki of fi at xki ;
Perform (5.2);

end

5.4 Convergence analysis

Let xk = (xk1, . . . , xkN)T ∈ IRNd. We can state the update rule (5.2) in a more
compact way as

xk+1 =Wxk − αgk, (5.3)

where gk = (gk1 , . . . , gkN)T , W = W ⊗ I ∈ IRNd×Nd, I ∈ IRd×d is the identity
matrix, and the symbol ⊗ represents the Kronecker product. 3

Without loss of generality, we can assume that d = 1, while the following
analysis can be applied to an arbitrary d ∈ N. We de�ne Ŵ =W − J . From
the analysis in section 5.2, we know that ∥Ŵ ∥ < 1.

Claim 5.1. For the matrices W , I, J and Ŵ , it holds that

(I − J)W = Ŵ (I − J). (5.4)

3Recall that for given matrices A ∈ IRm×n and B ∈ IRp×q, the Kronecker product is
de�ned as

A⊗B =
⎡⎢⎢⎢⎢⎢⎣

A11B A12B . . . A1nB
⋮ ⋮ ⋮

Am1B Am2B . . . AmnB

⎤⎥⎥⎥⎥⎥⎦
.
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Proof. First, we analyze the left-hand side (LHS) of (5.4).

(I − J)W =W − JW =W − 1

N
11TW =W − 1

N
11T =W − J = Ŵ ,

where the third equality is due to the weight matrix being doubly stochastic.
Next, we analyze the right-hand side of (5.4).

Ŵ (I − J) = Ŵ − ŴJ = Ŵ − (W − J)J = Ŵ −WJ + JJ

= Ŵ − J + 1

N
11T

1

N
11T = Ŵ − J + 1

N2
11T11T

= Ŵ − J + 1

N2
N11T = Ŵ − J + 1

N
11T = Ŵ .

This completes the proof

Next, we de�ne the following sequence

x̄k = 1

N

N

∑
i=1

xki =
1

N
1Txk.

Multiplying (5.3) by 1T from the left and dividing it by N , we get

x̄k+1 = x̄k − α

N

N

∑
i=1

gki . (5.5)

The update (5.5) resembles the update of a centralized subgradient method
to solve (4.1), given by

yk+1 = yk − α

N

N

∑
i=1

gki , (5.6)

where gki is a subgradient of fi evaluated at yk.

Note the key di�erence between the updates (5.5) and (5.6) - the points
at which we evaluate the gradients. If (5.5) was a centralized method, the
gradients of fi would have been evaluated at x̄k, instead of xki .

However, we will show that xki is close to x̄k, for all i = 1, . . . ,N , and
therefore, the method (5.5) behaves similarly to the centralized subgradient
method.

We make the following assumptions on the problem of interest (5.1).

Assumption 2. Each fi in (5.1) is convex, not necessarily di�erentiable.

Assumption 3. The problem (5.1) is solvable.
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Assumption 4. For all i = 1, . . . ,N , ∥gi(x)∥ ≤ G, G > 0, for all subgradients
gi of fi evaluated at x, for all x ∈ IRd.

Assumption 5. ∥x0
i − x∗∥ ≤ R, for all i = 1, . . . ,N and for all solutions x∗

of the problem (5.1).

Additionally, de�ne the following sequence

x̂ki = xki − x̄k, i = 1, . . . ,N,

and x̂k = (x̂k1, . . . , x̂kN)T ∈ IRNd. It is easy to note that x̂k = (I−J)xk (exercise).
We will study the evolution of the two sequences introduced next.

1. The �disagreement� sequence: x̂ki = xik − x̄k, i = 1, ...,N .

2. The evolution of the average sequence x̄k.

From the de�nition of x̂k and (5.3), we have

x̂k+1 = (I − J)xk+1 = (I − J)Wxk − α(I − J)gk = Ŵ (I − J)xk − α(I − J)gk

= Ŵ x̂k − α(I − J)gk,
(5.7)

where we used calim 5.1 for the third equality. Applying the L2 norm on
(5.7) and recalling that ∥Ŵ ∥ < 1, we get

∥x̂k+1∥ = ∥Ŵ x̂k − α(I − J)gk∥ ≤ ∥Ŵ ∥∥x̂k∥ + α∥I − J∥∥gk∥ ≤ δ∥x̂k∥ + α∥I − J∥∥gk∥,
(5.8)

where we denote ∥Ŵ ∥ ∶= δ < 1. Next, recall assumption 4. It can be shown
that ∥gk∥ ≤

√
NG (exercise). For ∥I −J∥ it holds that ∥I −J∥ ≤ ∥I∥+ ∥J∥ ≤ 2.

It can actually be shown that ∥I −J∥ = 1 (exercise). Using these facts in 5.8,
we get

∥x̂k+1∥ ≤ δ∥x̂k∥ + α
√
NG, (5.9)

for all k = 0,1,2 . . . .
Additionally, we make the following assumption.

Assumption 6. Let the initialization of x0
i ∈ IRd, i = 1, . . . ,N be such that

x̂0 = 0, where 0 ∈ IRd.

Remark. Note that assumption 6 is not hard to satisfy. For example, ini-
tializing all x0

i to zero vectors, i = 1, . . . ,N (a standard initialization in opti-
mization algorithms) satis�es the assumption.
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Applying 5.9 for k = 1 with assumption 6 in place, we get

∥x̂1∥ ≤ α
√
NG.

Similarly, for k = 2,3 we get

∥x̂2∥ ≤ δ∥x̂1∥ + α
√
NG ≤ (1 + δ)α

√
NG,

∥x̂3∥ ≤ δ∥x̂2∥ + α
√
NG ≤ (1 + δ + δ2)α

√
NG.

Applying the ineqaulity all the way up to k, we get

∥x̂k∥ ≤ (1 + δ + . . . + δk−1)α
√
NG Ô⇒ ∥x̂k∥ ≤ α

√
NG

(1 − δ)
, (5.10)

which gives us the disagreement bound, completing the �rst part of the anal-
ysis.

Next, we will analyze the evolution of x̄k. Recall assumption 2. For each
fi it holds

fi(y) ≥ fi(xki ) + (y − xki )Tgki , (5.11)

for all y ∈ IRd. Summing (5.11) over all i = 1, . . . ,N , we get

N

∑
i=1

fi(y) ≥
N

∑
i=1

fi(xki ) +
N

∑
i=1

(y − xki )Tgki . (5.12)

Denote f(x) = ∑N
i=1 fi(xi). From (5.12) we get

f(y) ≥
N

∑
i=1

(fi(xki ) ± fi(x̄k)) +
N

∑
i=1

(y − xki ± x̄k)Tgki

= f(x̄k) −
N

∑
i=1

(fi(x̄k) − fi(xki )) + (y − x̄k)T
N

∑
i=1

gki −
N

∑
i=1

(xki − x̄k)Tgki .

(5.13)

Next, recall that, by the Cauchy-Schwarz inequality we have xTy ≤ ∥x∥∥y∥.
Applying this fact in (5.13), we get

f(y) ≥ f(x̄k)−
N

∑
i=1

(fi(x̄k)−fi(xki ))+(y− x̄k)T
N

∑
i=1

gki −
N

∑
i=1

∥xki − x̄k∥∥gki ∥. (5.14)
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By the convexity of fi, we have

fi(xik) ≥ fi(x̄k) + (xki − x̄k)Tgfi(x̄k)
Ô⇒ − (fi(x̄k) − fi(xi)) ≥ −(x̄k − xki )Tgfi(x̄k) ≥ −∥gfi(x̄k)∥∥x̄k − xki ∥
Ô⇒ − (fi(x̄k) − fi(xi)) ≥ −G∥x̄k − xki ∥,

(5.15)

where we used assumption 4 in the last inequality. Substituting (5.15) and
appying assumption 4 in (5.14), we get

f(y) ≥ f(x̄k) −G
N

∑
i=1

∥x̄k − xki ∥ + (y − x̄k)T
N

∑
i=1

gki −G
N

∑
i=1

∥x̄k − xki ∥. (5.16)

Noting that ∥x̂ki ∥ = ∥x̄k − xki ∥ and denoting εk = 2G∑N
i=1 ∥x̂ki ∥, we get

f(y) ≥ f(x̄k) + (y − x̄k)T
N

∑
i=1

gki − εk. (5.17)

Next, we get

(
N

∑
i=1

∥x̂ki ∥)
2

= (N
N

N

∑
i=1

∥x̂ki ∥)
2

= N2( 1

N

N

∑
i=1

∥x̂ki ∥)
2

≤ N2( 1

N

N

∑
i=1

∥x̂ki ∥2)

= N(
N

∑
i=1

∥x̂ki ∥2) = N∥x̂k∥2.

(5.18)

Using (5.18) in the de�nition of εk, and recalling (5.10), we get

εk = 2G
N

∑
i=1

∥x̂ki ∥ ≤ 2G
√
N
α
√
NG

1 − δ
= 2αNG2

1 − δ
= ε. (5.19)

Substituting (5.19) in (5.17), we get

f(y) ≥ f(x̄k) + (y − x̄k)T
N

∑
i=1

gki − ε. (5.20)

Recall (5.5). De�ne ḡk = ∑N
i=1 g

k
i , and let x∗ be a minimizer of f(x) =

∑N
i=1 fi(x). We have

∥x̄k+1−x∗∥2 ≤ ∥x̄k− α
N
ḡk−x∗∥2 ≤ ∥x̄k−x∗∥2− 2α

N
(x̄k−x∗)T ḡk+ α

2

N2
∥ḡk∥2. (5.21)
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Using (5.20), we have

(x̄k − x∗)T ḡk ≤ −(f(x̄k) − f(x∗)) + ε. (5.22)

Substituting (5.22) in (5.21), we get

∥x̄k+1 − x∗∥2 ≤ ∥x̄k − x∗∥2 − 2α

N
(f(x̄k) − f(x∗)) + 2α

N
ε + α2

N2
∥ḡk∥2

≤ ∥x̄k − x∗∥2 − 2α

N
(f(x̄k) − f(x∗)) + 2αε

N
+ α2G2,

(5.23)

where we used ∥ḡk∥ = N∥gki ∥ (exercise), and assumption 4 in the second
inequality. Rearranging (5.23), we get

2α

N
(f(x̄k) − f(x∗)) ≤ ∥x̄k − x∗∥2 − ∥x̄k+1 − x∗∥2 + 2αε

N
+ α2G2. (5.24)

Applying (5.24) telescopically all the way to k = 0 and summing all the
equations up, we get

k−1

∑
t=0

(f(x̄t) − f(x∗)) ≤ N

2α
∥x̄0 − x∗∥2 + kε + kαNG

2

2
. (5.25)

De�ne the running average x̄kra = 1
k ∑

k−1
t=0 x̄

t. Dividing (5.25) by k, we get

1

k

k−1

∑
t=0

f(x̄t) − f(x∗) ≤ N

2αk
∥x̄0 − x∗∥2 + ε + αNG

2

2
. (5.26)

Due to convexity of f , we know that f(x̄kra) = f( 1
k ∑

k−1
t=0 x̄

t) ≤ 1
k ∑

k−1
t=0 f(x̄t)

(exercise). Therefore, we get

f(x̄kra) − f(x∗) ≤
N∥x̄0 − x∗∥2

2αk
+ ε + αNG

2

2
. (5.27)

Applying assumption 5, we get

f(x̄kra) − f(x∗) ≤
NR2

2αk
+ ε + αNG

2

2
, (5.28)

which shows that the running average converges to a neighborhood the solu-
tion, as k →∞. If we de�ne xki,ra = 1

k ∑
k−1
t=0 x

t
i, we have

f(xki,ra) − f(x∗) = (f(xi,ra) − f(x̄kra)) + (f(x̄kra) − f(x∗)). (5.29)
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While can bound the second term on the right-hand side of (5.28) using
(5.26), we can use convexity of f to bound the �rst term on the right-hand
side as follows.

f(x̄kra) ≥ f(xki,ra) + gf(xki,ra)T (x̄kra − xki,ra)
Ô⇒ f(xki,ra) − f(x̂kra) ≤ gf(xki,ra)T (xki,ra − x̄kra) ≤ ∥gf(xki,ra)∥∥(xki,ra − x̄kra)∥

≤ G∥1

k

k−1

∑
t=0

(xti − x̄t)∥ ≤ G
1

k

k−1

∑
t=0

∥x̂ti∥ ≤ NG
1

k

k−1

∑
t=0

∥x̂t∥ ≤ αN
3
2G2

1 − δ
.

(5.30)

Finally, using (5.29), (5.28) and (5.30), we get

f(xki,ra) − f(x∗) ≤
αN

3
2G2

1 − δ
+ NR

2

2αk
+ 1

2
αNG2 + 2αNG2

1 − δ
, (5.31)

which shows that the running average of each individual agent's estimate
converges to the neighborhood of the solution.

Remark. With respect to the centralized subgradient method (see (2.12)),
the right-hand side of (5.28) is of a similar form. It is only deteriorated by
the additive term ε. Note also that with the centralized subgradient method,
we kept track of the best point so far. Here, we kept track of the �time�
average. Among other reasons, this is because, in the distributed settings,
keeping track of the best point so far is hard (no agent has access to the full
objective f , only its local fi).

Remark. Note the di�erence between (5.28) and (5.31). Compared to (5.28),

(5.31) is only deteriorated by αN
3
2G2

1−δ , which is due to the disagreement be-
tween the local solution and the average network solution.
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Chapter 6

An advanced topic: Primal

distributed Nesterov-like gradient

methods

This chapter considers distributed gradient methods based on the (central-
ized) Nesterov gradient method, e.g., [32], for smooth convex costs. The
methods have been proposed in [33, 34], while here we present the analysis
of these methods from Chapter 4 of the PhD thesis [18]. Speci�cally, we con-
sider here the methods D�NG [33] and mD�NC [34]. The main purpose of
the chapter is to show an example of a mechanism for distributed algorithms
acceleration (Nesterov gradient-based acceleration), as well as describe the
main steps in the analysis of an accelerated distributed method. A major
part of the Chapter is taken practically unaltered from the PhD thesis [18].

6.1 Algorithm D�NG

6.1.1 Model and notational preliminaries

Notation. We denote by: Rd the d-dimensional real coordinate space, d ≥ 1;
Aij the entry in the i-th row and j-th column of a matrix A; ai the i-th
entry of a vector a; (⋅)⊺ the transpose; ∥ ⋅∥ = ∥ ⋅∥2 the Euclidean (respectively,
spectral) norm of its vector (respectively, matrix) argument (We note that
∥ ⋅ ∥ also denotes the modulus of a scalar throughout); λi(⋅) the i-th smallest
eigenvalue; ∣ ⋅ ∣ the cardinality of a set; ∇J (y) the gradient evaluated at y
of a function J ∶ Rd → R, d ≥ 1. Finally, notation r(k) = O(q(k)) means
existence of a K > 0 such that r(k) ≤ µq(k), for some µ > 0, for all k ≥K.

49
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Distributed optimization model. The nodes solve the unconstrained
problem:

minimize
N

∑
i=1

fi(x) =∶ f(x). (6.1)

The function fi ∶ Rd → R is known only to node i. We impose Assumptions 7
and 8.

Assumption 7 (Solvability; Lipschitz continuous gradient). 1. There ex-
ists a solution x⋆ ∈ Rd with f(x⋆) = infx∈Rd f(x) =∶ f⋆.

2. for all i, fi is convex, di�erentiable, with Lipschitz continuous deriva-
tive with constant L ∈ [0,∞): ∥∇fi(x)−∇fi(y)∥ ≤ L∥x−y∥, for all x, y ∈
Rd.

Assumption 8 (Bounded gradients). There exists a constant G ∈ [0,∞)
such that, for all i, ∥∇fi(x)∥ ≤ G, for all x ∈ Rd.

6.1.2 D�NG algorithm

We now describe the algorithm D�NG proposed in [33]. We continue to
assume a generic, undirected, connected network, as in Chapter 5, with an
associated doubly stochastic weight matrix W . Algorithm D�NG generates
the sequence (xi(k), yi(k)), k = 0,1,2, ..., at each node i. Here, yi(k) is an
auxiliary variable. D�NG is initialized by xi(0) = yi(0) ∈ Rd, for all i. The
update at node i and k = 1,2, ... is given by the following:

xi(k) = ∑
j∈Oi

Wij yj(k − 1) − αk−1∇fi(yi(k − 1)) (6.2)

yi(k) = xi(k) + βk−1 (xi(k) − xi(k − 1)) . (6.3)

Here, Wij are the averaging weights (the entries of the N ×N matrix W ),
and Oi is the neighborhood set of node i (including i). The step-size αk and
the sequence βk are:

αk =
c

k + 1
, c > 0; βk =

k

k + 3
, k = 0,1, ... (6.4)

Vector form. We can also present D�NG in vector format. Introduce
x(k) = (x1(k)⊺, x2(k)⊺, ..., xN(k)⊺)⊺, y(k) = (y1(k)⊺, y2(k)⊺, ..., yN(k)⊺)⊺, and
de�ne F ∶ RNd → RN as: F (x) = F (x1, x2, ..., xN) = (f1(x1), f2(x2), ..., fN(xN))⊺.
Then, given x(0) = y(0), D�NG in vector form becomes:
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x(k) = (W ⊗ I)y(k − 1) − αk−1∇F (y(k − 1)) (6.5)

y(k) = x(k) + βk−1 (x(k) − x(k − 1)) , k = 1,2, ..., (6.6)

6.2 Analysis of algorithm D�NG

In this Section, we consider D�NG for unconstrained optimization, when the
fi's satisfy a growth condition. Subsection 6.2.1 details the Assumptions
and setup, Subsection 6.2.2 de�nes clone functions Ψ and gives their prop-
erties, and Subsection 6.3 performs convergence rate analysis. Throughout
the current section, we consider static networks.

6.2.1 Assumptions and setup

We impose the following two Assumptions on the fi's.

Assumption 9. For all i, fi ∶ Rd → R is convex, di�erentiable, and has
Lipschitz continuous derivative with constant L, i.e., for all i:

∥∇fi(x) −∇fi(y)∥ ≤ L ∥x − y∥, for all x, y ∈ Rd.

Assumption 10 (Growth assumption). There exist two positive scalars b
and B, such that, for all i, fi(x) ≥ b ∥x∥ whenever ∥x∥ ≥ B.

Assumption 9 is standard in the analysis of gradient methods. Assump-
tion 10 says that the function grows at least as b∥x∥ when ∥x∥ is su�ciently
large. The two Assumptions hold with many costs, e.g., quadratics with pos-
itive Hessians, and source localization costs. Under Assumption 10, each fi
is coercive4, and so is f ∶= ∑N

i=1 fi. Thus, there exist x
⋆
i , i = 1, ...,N , and x⋆,

such that f⋆i ∶= infx∈Rd fi(x) = fi(x⋆i ), and f⋆ ∶= infx∈Rd f(x) = f(x⋆). With-
out loss of generality (w.l.o.g.), we choose the constant B in Assumption 10
such that:

f⋆i < bB, for all i = 1, ...,N, (6.7)

f⋆ < N bB. (6.8)

Hence, any minimizer x⋆i of fi, for all i, and any minimizer x⋆ of f , belongs
to the closed ball {x ∈ Rd ∶ ∥x∥ ≤ B}.

4Coercive means that fi(x)→ +∞ whenever ∥x∥→ +∞.
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Introduce the function F ∶ RN → R, as:

F (x) = F (x1, ..., xN) = f1(x1) + ... + fN(xN). (6.9)

For future reference, we introduce the set:

S ∶= {x ∈ RN ∶ F (x) ≤ N bB} , (6.10)

and the following two constants:

D ∶= sup
x∈S

∥x∥ <∞ (6.11)

G ∶= sup
x∈S

∥∇F (x)∥ <∞.

The set S is compact, because the function F is coercive by Assumption 10.
The two suprema in (6.11) are attained at some points and are �nite, because
the set S is compact, and the functions ∥ ⋅∥ and ∥∇F (⋅)∥ are continuous (The
latter function is continuous due to continuity of the gradients of the fi's �
see Assumption 9.)

We consider the D�NG algorithm. Each node i updates its solution esti-
mate xi(k) and an auxiliary variable yi(k) over iterations k as follows:

xi(k) = (1 − `iw) yi(k − 1) +w ∑
j∈Oi−{i}

yj(k − 1) − α∇fi(yi(k − 1)) (6.12)

yi(k) = xi(k) + βk−1 (xi(k) − xi(k − 1)) , k = 1,2, ..., (6.13)

with xi(0) = yi(0) ∈ Rd. The step-size αk and the sequence βk are:

αk =
c

k + 1
, βk =

k

k + 3
, k = 0,1, ... (6.14)

We choose c and w as:

c ≤ 1

ρλN(L) +L
(6.15)

w = c ρ.

Here, ρ is a positive constant; e.g., it can be set to ρ = 1. To satisfy (6.15),
we require that nodes know beforehand (upper bounds on) ρ, λN(L), and
L. We can set ρ = 1. Further, it can be shown that λN(L) ≤ 2 maxi=1,...,N `i.
Finally, if ∇fi has a Lipschitz constant Li, known by node i, we can take L
as L ∶= maxi=1,...,N Li. Hence, requirement (6.15) is accomplished beforehand
through two distributed maximum computations � in O(N) per-node scalar
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communications.
5 Here, and throughout the whole Chapter, to avoid notational clutter, we

assume equal initialization x(0) ∶= xi(0) = yi(0) = xj(0) = yj(0), for all i, j,
and we let d = 1, but the results extend for a generic d as well.

6.2.2 Clone functions Ψk

For a real number k ≥ 0, consider the following (clone) unconstrained opti-
mization problem over x = (x1, x2, ..., xN) ∈ RN :

minimize Ψk(x) ∶= ∑N
i=1 fi(xi) +

k ρ
2 x⊺Lx, (6.16)

where ρ > 0 is a parameter. In (6.16), recall that L is the graph Lapla-
cian matrix. Consider the step-size αk−1 = c/k, and let w = cρ. Intro-
duce compact notation for nodes' estimates x(k) ∶= (x1(k), ..., xN(k))⊺, and
y(k) ∶= (y1(k), ..., yN(k))⊺. Then, it is easy to verify that algorithm (6.5) can
be re-written as:

x(k) = y(k − 1) − αk−1∇Ψk(y(k − 1)) (6.17)

y(k) = x(k) + βk−1 (x(k) − x(k − 1)) , k = 1,2, ...

with αk and βk in (6.14) and the initialization is x(0) = y(0) = x(0)1. Hence,
at iteration k, algorithm (6.5) performs the (exact) Nesterov gradient step
with respect to the clone function Ψk.

We impose that the step-size satis�es:

αk−1 = c/k ≤ 1/LΨk ,

where LΨk is a Lipschitz constant of the gradient of Ψk, which we can take
as:

LΨk = k (ρλN(L) +L) .

Thus, we can choose:

Properties of the clone functions Ψk

Next Lemma states certain properties of the clone functions Ψk's and prob-
lem (6.16). The Lemma also relates (6.16) with the original problem (6.1).

Lemma 1 (Properties of (6.16)). Consider (6.16). Then, there holds:

5We assign equal weights w0 to all neighbors; generalization to unequal weights is
straightforward.
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1. There exists a solution xc(k) = (xc
1(k), ..., xc

N(k)) to (6.16) that satis-
�es infx∈RN Ψk(x) = Ψ(xc(k)) =∶ Ψ⋆

k > −∞. Further, the corresponding
solution set is compact.

2. f⋆ ≥ Ψ⋆
k ≥ Ψ⋆

t for all k, t, k > t.

3. For any xc(k), there holds: ∥∇fi(xc
avg(k))∥ ≤ LD +G =∶ G⋆, for all i, k,

where xc
avg(k) = 1

N ∑
N
i=1 x

c
i(k).

4. For any k > 0, Ψ⋆
k ≥ f⋆ −

N(G⋆)2
2ρkλ2(L) .

For part (a), note that the function Ψk is coercive. Also, by Assumption 7,
the function Ψk is closed and convex. Hence, as Ψk is closed, convex, and
coercive, problem (6.16) is solvable, the solution set is compact, and Ψ⋆

k > −∞
(see, e.g., [35]).

We prove part (b). Fix some k, and note that:

f⋆ = Ψk(x⋆1) =
N

∑
i=1

fi(x⋆) ≥ Ψk(xc(k)) = Ψ⋆
k,

and thus f⋆ ≥ Ψ⋆
k. Next, �x k, t, k > t, and note that:

Ψ⋆
t = Ψt(xc(t)) ≤ Ψt(xc(k)) =

N

∑
i=1

fi(xc
i(k)) +

ρ t

2
xc(k)⊺Lxc(k)

≤
N

∑
i=1

fi(xc
i(k)) +

ρk

2
xc(k)⊺Lxc(k) = Ψ⋆

k,

and so Ψ⋆
t ≤ Ψ⋆

k whenever t < k, which completes the proof of part (b).

We now prove part (c). From part (b):

N

∑
i=1

fi(xc
i(k)) ≤ Ψ⋆

k ≤ f⋆ ≤ N bB, for all k.

Thus, xc(k) belongs to set S, and then, in view of (6.11), we have: ∥xc
i(k)∥ ≤

∥xc(k)∥ ≤ D, for all i, for all k. Further:

∥xc
avg(k)∥ = ∥ 1

N

N

∑
i=1

xc
i(k)∥ ≤

1

N
N∥xc(k)∥ ≤ D.
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We now upper bound ∥∇fi(xc
avg(k))∥:

∥∇fi(xc
avg(k))∥ = ∥∇fi(xc

avg(k)) −∇fi(xc
i(k)) +∇fi(xc

i(k))∥
≤ ∥∇fi(xc

avg(k)) −∇fi(xc
i(k))∥ + ∥∇fi(xc

i(k))∥
≤ L∥xc

avg(k) − xc
i(k)∥ + ∥∇fi(xc

i(k))∥
≤ L (∥xc

avg(k)∥ + ∥xc
i(k)∥) + ∥∇fi(xc

i(k))∥
≤ 2LD +G =∶ G⋆, for all k,

where we use ∥xc
i(k)∥ ≤ ∥xc(k)∥ ≤ D (as xc(k) belongs to set S), (6.11), and

the Lipschitz continuity of the gradient ∇fi (see Assumption 9.) Thus, the
result in part (c). We now prove part (d). We have:

Ψ⋆
k =

N

∑
i=1

fi(xc
i(k)) +

ρ

2
kxc(k)⊺Lxc(k)

≥
N

∑
i=1

(fi(xc
avg(k)) +∇fi(xc

avg(k))(xc
i(k) − xc

avg(k))) (6.18)

+ ρ
2
k(xc(k) − xc

avg(k)1)⊺L(xc(k) − xc
avg(k)1)

≥ f(xc
avg(k)) +

N

∑
i=1

(−G⋆∥xc
i(k) − xc

avg(k)∥ +
ρ

2
kλ2(L)∥xc

i(k) − xc
avg(k)∥2)

(6.19)

≥ f⋆ − N(G⋆)2

2ρk λ2(L)
,

after (separately) minimizing each summand in (6.19) over ε ∶= ∥xc
i(k) −

xc
avg(k)∥ ∈ R. Inequality (6.18) used convexity of the fi's and the fact that
L(xc

avg(k)1) = 0. Inequality (6.19) used the bound on the gradients, given by
∥∇fi(xc

avg(k))∥ ≤ G⋆, and the variational characterization of the eigenvalues
to show (xc(k) − xc

avg(k)1)⊺L(xc(k) − xc
avg(k)1) ≥ λ2(L)∥xc(k) − xc

avg(k)1∥2,
as (xc(k) − xc

avg(k)1) is orthogonal to q1 = 1√
N
1�the eigenvector of L that

corresponds to λ1(L) = 0. Thus, the result in part (d).

6.3 Convergence analysis of projected mD�NC

We brie�y summarize the analysis. We �rst show that ∑N
i=1 fi(xi(k)) =

O(log k), thus showing that ∑N
i=1 fi(xi(k)) does not grow fast with k. Then,

using the growth assumption on the fi's in Assumption 10, we show that
∥∇fi(yi(k))∥ = O(log k). This then gives us that f(xi(k))−f⋆ = O(log3 k/k),
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and, as a corollary, that f(xi(k)) is uniformly bounded, for all i, k. (Lemma 4.)
Finally, we explain how to boost the bound to O(log k/k).

Bounding the function values by O(log k)

We now show that ∑N
i=1 fi(xi(k)) is O(log k).

Lemma 2. Consider algorithm (6.12)�(6.15). Further, denote by R ∶= ∥x(0)−
x⋆∥. Then, for all k = 1,2, ...:

N

∑
i=1

fi(xi(k)) ≤
2N R2

c
+ f(x(0)) + 3(bN B −

N

∑
i=1

f⋆i ) +
N(G⋆)2

2ρλ2(L)
Sk,

where

Sk = 1 +
k−1

∑
t=1

(t + 1)2

t3
+
k−1

∑
t=2

1

t⌊t/2⌋
= O(log k). (6.20)

We prove Lemma 2 using the interpretation (6.17) that the iteration k
of our algorithm (6.5) is a Nesterov gradient step with respect to Ψk. We
use it here to estimate the progress in one iteration with respect to Ψk.

More precisely, denote by v(k) = y(k)−(1−θk)x(k)
θk

and recall that θk = 2/(k + 2).
Applying Lemma 5 with f ≡ Ψk, x● ≡ x⋆1, and Lk = 1/αk = k/c (Note that
here δk = 0; also, we do not choose x● to be an optimizer of Ψk, which is a
valid choice ):

(k + 1)2

k
(Ψk(x(k)) −Ψk(x⋆1)) + (2/c)∥v(k) − x⋆1∥2 (6.21)

≤ k
2 − 1

k
(Ψk(x(k − 1)) −Ψk(x⋆1)) + (2/c)∥v(k − 1) − x⋆1∥2.

Next, note that the term k2−1
k (Ψk(x(k − 1)) −Ψk(x⋆1)) on the right hand

side of (6.21) is, for k = 1,2, ..., upper bounded as (because Ψk(x⋆1) ≥ Ψ⋆
k):

k2 − 1

k
(Ψk(x(k − 1)) −Ψk(x⋆1)) ≤ k2 − 1

k
(Ψk(x(k − 1)) −Ψ⋆

k)

≤ k (Ψk(x(k − 1)) −Ψ⋆
k) , (6.22)

where the last inequality follows because Ψk(x(k−1)) ≥ Ψ⋆
k. Further, the term

(k+1)2
k (Ψk(x(k)) −Ψk(x⋆1)) on the left hand side of (6.21) is, for k = 1,2, ...,
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lower bounded as:

(k + 1)2

k
(Ψk(x(k)) −Ψk(x⋆1)) =

(k + 1)2

k
(Ψk(x(k)) −Ψ⋆

k)− (6.23)

(k + 1)2

k
(Ψk(x⋆1) −Ψ⋆

k)

≥(k + 2) (Ψk(x(k)) −Ψ⋆
k) −

(k + 1)2

k
(Ψk(x⋆1) −Ψ⋆

k) (6.24)

≥(k + 2) (Ψk(x(k)) −Ψ⋆
k) −

(k + 1)2

k

N(G⋆)2

2ρkλ2(L)
, (6.25)

Here, (6.24) uses the fact that Ψk(x(k))−Ψ⋆
k ≥ 0, so that k2+2k+1

k (Ψk(x(k))−
Ψ⋆
k) ≥

k2+2k
k (Ψk(x(k)) −Ψ⋆

k); and (6.25) uses inequality f⋆ −Ψ⋆
k = Ψk(x⋆1) −

Ψ⋆
k ≤ N(G⋆)2

2ρkλ2(L) from Lemma 1, part (d). Using (6.22) and (6.25), dividing

(6.21) by k, and rearranging the terms:

(1 + 2

k
) (Ψk(x(k)) −Ψ⋆

k) +
2

ck
∥v(k) − x⋆1∥2

≤ (Ψk(x(k − 1)) −Ψ⋆
k) +

2

ck
∥v(k − 1) − x⋆1∥2 + (k + 1)2

k3

N(G⋆)2

2ρλ2(L)
,

or, equivalently:

(Ψk(x(k)) −Ψ⋆
k) +

2

ck
∥v(k) − x⋆1∥2 ≤(Ψk(x(k − 1)) −Ψ⋆

k) +
2

ck
∥v(k − 1) − x⋆1∥2

+(k + 1)2

k3

N(G⋆)2

2ρλ2(L)
− 2

k
(Ψk(x(k)) −Ψ⋆

k) .

(6.26)

We next replace the term (Ψk(x(k)) −Ψ⋆
k) on the left hand side in (6.26)

with its lower bound that involves (Ψk+1(x(k)) −Ψ⋆
k+1). Using the de�nition

of the functions Ψk and Ψk+1, adding and subtracting Ψ⋆
k+1 +

ρ
2x(k)⊺Lx(k),

and using the relation Ψ⋆
k+1 ≥ Ψ⋆

k (see Lemma 1, part (b)):

(Ψk(x(k)) −Ψ⋆
k) =

N

∑
i=1

fi(xi(k)) +
ρk

2
x(k)⊺Lx(k) −Ψ⋆

k +Ψ⋆
k+1 −Ψ⋆

k+1

+ ρ

2
x(k)⊺Lx(k) − ρ

2
x(k)⊺Lx(k)

= (Ψk+1(x(k)) −Ψ⋆
k+1) −

ρ

2
x(k)⊺Lx(k) + (Ψ⋆

k+1 −Ψ⋆
k)

≥ (Ψk+1(x(k)) −Ψ⋆
k+1) −

ρ

2
x(k)⊺Lx(k). (6.27)
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Further, we replace the term − 2
k
(Ψk(x(k)) −Ψ⋆

k) on the right hand side of

(6.26) by an upper bound as follows. We express (Ψk(x(k)) −Ψ⋆
k) in terms

of (Ψ⌊k/2⌋(x(k)) −Ψ⋆
⌊k/2⌋) as follows:

(Ψk(x(k)) −Ψ⋆
k) =

N

∑
i=1

fi(xi(k)) +
ρk

2
x(k)⊺Lx(k) −Ψ⋆

k

=
N

∑
i=1

fi(xi(k)) +
ρ ⌊k/2⌋

2
x(k)⊺Lx(k) −Ψ⋆

⌊k/2⌋ +Ψ⋆
⌊k/2⌋

−Ψ⋆
k +

ρ(k − ⌊k/2⌋)
2

x(k)⊺Lx(k)

= (Ψ⌊k/2⌋(x(k)) −Ψ⋆
⌊k/2⌋) − (Ψ⋆

k −Ψ⋆
⌊k/2⌋) +

ρ(k − ⌊k/2⌋)
2

x(k)⊺Lx(k).

Thus, using (Ψ⌊k/2⌋(x(k)) − Ψ⋆
⌊k/2⌋) ≥ 0, and k − ⌊k/2⌋ ≥ k/2, the term

(Ψk(x(k)) −Ψ⋆
k) is bounded from above as:

(Ψk(x(k)) −Ψ⋆
k) ≥ −(Ψ⋆

k −Ψ⋆
⌊k/2⌋) + ρ

(k/2)
2

x(k)⊺Lx(k),

or, equivalently:

−2

k
(Ψk(x(k)) −Ψ⋆

k) ≤
2

k
(Ψ⋆

k −Ψ⋆
⌊k/2⌋) −

ρ

2
x(k)⊺Lx(k).

Next, by Lemma 1, parts (c) and (d), the term :

(Ψ⋆
k −Ψ⋆

⌊k/2⌋) = (Ψ⋆
k − f⋆) + (f⋆ −Ψ⋆

⌊k/2⌋) ≤
N(G⋆)2

2ρλ2(L)⌊k/2⌋
, k = 2,3, ...,

which �nally gives:

−2

k
(Ψk(x(k)) −Ψ⋆

k) ≤ (Ψ⋆
k −Ψ⋆

⌊k/2⌋) −
ρ

2
x(k)⊺Lx(k)

≤ N(G⋆)2

ρλ2(L)k⌊k/2⌋
− ρ

2
x(k)⊺Lx(k), k = 2,3, ...

(6.28)

Note that, for k = 1:

−2

k
(Ψk(x(k)) −Ψ⋆

k) ≤ 2(Ψ⋆
1 −Ψ⋆

0) −
ρ

2
x(1)⊺Lx(1). (6.29)
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Now, applying the bounds (6.27) and (6.28) to (6.26), for k = 2,3, ...:

(Ψk+1(x(k)) −Ψ⋆
k+1) +

2

ck
∥v(k) − x⋆1∥2 ≤ (Ψk(x(k − 1)) −Ψ⋆

k)

+ 2

ck
∥v(k − 1) − x⋆1∥2 + N(G⋆)2

2λ2(L)
((k + 1)2

2k3
+ 1

k⌊k/2⌋
) ,

which gives:

(Ψk+1(x(k)) −Ψ⋆
k+1) ≤ (Ψk(x(k − 1)) −Ψ⋆

k) +
2

ck
∥v(k − 1) − x⋆1∥2 − 2

ck
∥v(k) − x⋆1∥2

+ [(k + 1)2

2k3
+ 1

k⌊k/2⌋
] N(G⋆)2

ρλ2(L)
, k = 2,3, ... (6.30)

Also, for k = 1:

(Ψ2(x(1)) −Ψ⋆
2) ≤ (Ψ1(x(0)) −Ψ⋆

1) +
2

c
∥v(0) − x⋆1∥2 − 2

c
∥v(1) − x⋆1∥2

+ (1 + 1)2

2 ⋅ 13

N(G⋆)2

ρλ2(L)
+ 2(Ψ⋆

1 −Ψ⋆
0). (6.31)

Finally, by telescoping (6.30) and (6.31), and using the de�nition of Sk+1:

(Ψk+1(x(k)) −Ψ⋆
k+1) ≤ Ψ1(x(0)) −Ψ⋆

1 + (2/c)∥v(0) − x⋆1∥2 (6.32)

+ N(G⋆)2

ρλ2(L)
[Sk+1] + 2(Ψ⋆

1 −Ψ⋆
0).

Use equality x(0) = v(0) = x(0)1; Ψ⋆
1 ≤ f⋆; Ψ⋆

0 ≥ ∑N
i=1 f

⋆
i ; Ψ⋆

1 ≥ ∑N
i=1 f

⋆
i ; and

Ψ1(x(0)1) = f(x(0)). Substituting the latter �ndings in (6.32), we get the
desired result.

Bounding gradients by O(log k)

We now use Lemma 2 to show that the gradients ∥∇fi(yi(k))∥ = O(logK),
k = 1, ...,K. Denote by:

Cf ∶= ( f⋆ − min
i=1,...,N

∑
j≠i
f⋆j ) + 3(bN B −

N

∑
i=1

f⋆i ) + f(x(0)) +
2N R2

c
+ N(G⋆)2

2ρλ2(L)
.

(6.33)
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Lemma 3. Consider algorithm (6.12)�(6.15), and denote by:

Cgrad ∶= 3Lmax{B, 1

b
Cf} +L∥x(0)∥ + max

i=1,...,N
∥∇fi(yi(x(0)))∥. (6.34)

Then, for all k = 0,1, ...,K:

∥∇fi(yi(k))∥ ≤ Cgrad SK .

Fix arbitrary node i ∈ {1,2, ...,N}. By Lemma 2, and using fj(xi(k)) ≥
f⋆j , j ≠ i:

fi(xi(k)) ≤ (f⋆ −
N

∑
j≠i
f⋆j ) +

2NR2

c
+ N(G⋆)2

2ρλ2(L)
Sk + 3(bNB −

N

∑
i=1

f⋆i )

≤ Cf Sk ≤ Cf SK ,

because Sk ≥ 1 for all k = 1, ...,K, and Sk ≤ SK , for all k = 1, ...,K. Next,
using Assumption 10:

∥xi(k)∥ ≤ max{B, (1/b)Cf} SK .

which, because ∥y(k)∥ = ∥x(k)+ k−1
k+2(x(k)−x(k − 1))∥ ≤ 2∥x(k)∥+ ∥x(k − 1)∥,

gives:
∥yi(k)∥ ≤ 3 max{B, (1/b)Cf} SK , (6.35)

Now, using the Lipschitz continuity of ∇fi and the triangle inequality:

∥∇fi(yi(k))∥ = ∥∇fi(yi(k)) −∇fi(yi(0)) +∇fi(yi(0))∥
≤ ∥∇fi(yi(k)) −∇fi(yi(0))∥ + ∥∇fi(yi(0))∥
≤ L∥yi(k) − yi(0)∥ + ∥∇fi(yi(0))∥
≤ L∥yi(k)∥ +L∥yi(0)∥ + ∥∇fi(yi(0))∥.

The latter gives the desired result using the bound (6.57), the inequalities
∥yi(0)∥ = ∥xi(0)∥ = ∥x(0)∥, ∥∇fi(yi(0))∥ ≤ maxi=1,...,N ∥∇fi(x(0))∥, and using
SK ≥ 1.

Optimality gap O(log3 k/k): Bounding the function values by O(1)

We are now ready to prove the O(log3 k/k) rate of convergence, as well as
the bounded gradients result.

Theorem 6.1 (The O(log3 k/k) rate of convergence under the growth as-
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sumption). Consider algorithm (6.12)�(6.15). Then, for all nodes i, the op-
timality gap 1

N ( f(xi(k)) ≤ f⋆ ) = O(log3 k/k); more precisely:

1

N
(f(xi(k)) − f⋆) (6.36)

≤ 2R2

c
+ 16LC2

consC
2
grad

S2
k

k

k

∑
t=1

(t + 1)2

t3
+C2

gradCcons

S2
k

k
, k = 1,2, ...

Lemma 4. Consider algorithm (6.12)�(6.15). Then, for all nodes i, the
optimality gap f(xi(k)) ≤ f⋆ = O(log3 k/k); more precisely:

f(xi(k)) ≤ f⋆ +
2NR2

c
+ a1LC

2
consC

2
grad + a2NC

2
gradCcons,

where a1, a2 are universal constants independent of system parameters.

[Proof of Theorem 6.1]

Recall that, to establish the optimality gap at iteration k, the proof of this
Theorem actually required only that the gradients ∥∇fi(yi(t))∥ be bounded,
for all t = 0,1, ..., k. Hence, for a �xed k, we can replace the unform bound on
the gradients G with a bound Gk that satis�es: ∥∇fi(yi(t))∥ ≤ Gk, for all t =
0,1, ..., k. We can use Gk = Cgrad Sk, with Sk in (6.20) and Cgrad in (6.34).
Thus, Theorem 6.1 follows.

[Proof of Lemma 4] Lemma 4 follows after maximizing the right hand
side in (6.36) over k ≥ 1, i.e., after calculating that:

16 max
k≥1

{
S2
k

k

k

∑
t=1

(t + 1)2

t3
} ≤ 2000, max

k≥1
{
S2
k

k
} ≤ 50.

Improving convergence rate to O(log k/k)

It is clear that we can now improve convergence rate to O(log k/k). As
the function values f(xi(k)) are uniformly bounded by a constant for all
k, we proceed like in the proof of Lemma 3, and conclude that the gra-
dients ∇fi(yi(k)) are uniformly bounded by a constant, i.e., it holds that:
∥∇fi(yi(k))∥ ≤ C ′

grad, for all i, for all k, for a certain constant C ′
grad. Hence,

we obtain the O(log k/k) convergence rate, as desired.
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6.4 Projected mD�NC method: Constrained

optimization

6.4.1 Model and algorithm

We consider constrained optimization problem:

minimize
N

∑
i=1

fi(x) =∶ f(x) subject to x ∈ X , (6.37)

and let the fi's and X obey the following.

Assumption 11. 1. The set X is nonempty, convex, and compact with
∥x∥ ≤ B, for all x ∈ X for some B ∈ (0,∞).

2. For all i, fi ∶ Rd ↦ R is convex, continuously di�erentiable, with Lips-
chitz continuous gradient with constant L on the set X ′ ∶= {x ∈ Rd ∶ ∥x∥ ≤ 3B}:

∥∇fi(x) −∇fi(y)∥ ≤ L∥x − y∥, for all x, y ∈ X ′.

By Assumption 11, there exists a solution x⋆ ∈ X with f(x⋆) = f⋆ =
infx∈X f(x), and the solution set {x⋆ ∈ X ∶ f(x⋆) − f⋆} is compact. Also, the
gradient ∇fi(x) is bounded over the set X ′, i.e., there exists a constant G ∈
[0,∞) such that ∥∇fi(x)∥ ≤ G, for all x ∈ X ′. Assumption 11 encompasses
many costs fi's; e.g., any fi that is twice continuously di�erentiable on Rd

obeys Assumption 11 (b) with constant L = maxx∈X ′ ∥∇2fi(x)∥.
The projected mD�NC algorithms operates in two time scales, i.e., it

has inner iterations s and outer iterations k. There are τk inner iterations
at the outer iteration s, with τk speci�ed further ahead. We capture the
communication pattern at (k, s) by the random matrix W (k, s) that obeys
the following.

Assumption 12. The matrices W (k, s) are:

1. Mutually independent and identically distributed;

2. Stochastic, symmetric, with positive diagonals, almost surely;

3. For all i, j = 1, ...,N , almost surely, Wij(k, s) ∈ {0} ∪ [w,1];

4. The graph is connected on average, i.e., ∥E [W (k, s)] − J∥ < 1.



6.4. PROJECTEDMD�NCMETHOD: CONSTRAINEDOPTIMIZATION63

Denote by µ ∶= (∥E [W (k, s)2] − J∥)1/2
, and introduce, for future refer-

ence, the following matrices:

W(k) =W (k, τk)W (k, τk − 1)...W (k,1) and W̃(k) ∶=W(k) − J. (6.38)

Projected mD�NC algorithm

The projected mD�NC algorithm is summarized in Algorithm 4. See also [34]
for an unconstrained variant of the method. The step-size α ≤ 1/(2L).

Algorithm 4: The projected mD�NC algorithm

1: Initialization: Node i sets: xi(0) = yi(0) ∈ Rd; and k = 1.

2: Node i calculates: x
(a)
i (k) = yi(k − 1) − α∇fi(yi(k − 1)).

3: (Consensus) Nodes run average consensus on a 2d × 1 variable χi(s, k),
initialized by χi(s = 0, k) = (x(a)i (k)⊺, xi(k − 1)⊺)⊺:

χi(s, k) = ∑
j∈Oi(k)

Wij(k, s)χj(s − 1, k), s = 1, ..., τk, τk = ⌈4 log k + logN

− log µ̄
⌉ ,

(6.39)

and set x
(c)
i (k) ∶= [χi(s = τk, k)]1∶d and x

(b)
i (k − 1) ∶= [χi(s = τk, k)]d+1∶2d.

(Here [a]l∶m is a selection of l-th, l + 1-th, ..., m-th entries of vector a.)
4: Node i calculates:

xi(k) ∶= PX {x(c)i (k)} .

5: Node i calculates:

yi(k) = (1 + βk−1)xi(k) − βk−1 x
(b)
i (k − 1).

6: Set k ↦ k + 1 and go to step 2.

6.4.2 Framework of Inexact Nesterov gradient method

Throughout this Subsection, we consider the (centralized) constrained min-
imization of a function f(x) subject to x ∈ X , where f ∶ Rd → R is convex,
and X ⊂ Rd is a nonempty, closed, convex set.

De�nition 6.1 (Inexact oracle). Consider a convex function f ∶ Rd → R and
a nonempty, closed, convex set X . We say that a pair (f̂y, ĝy) ∈ R ×Rd is a
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(Ly, δy) inexact oracle of f at point y ∈ Rd over the set X if:

f(x) ≥ f̂y + ĝ⊺y (x − y) , for all x ∈ X (6.40)

f(x) ≤ f̂y + ĝ⊺y (x − y) +
Ly
2

∥x − y∥2 + δy, for all x ∈ X . (6.41)

We give a couple of remarks with respect to De�nition 6.1. First, in
De�nition 6.1, we require that x belongs to X , while y may lie outside X .
Second, throughout we just use the wording �inexact oracle at y� rather
than �inexact oracle of f at y over X ,� as the set X and the function f are
understood from context. Finally, if (f̂y, ĝy) is a (Ly, δy) inexact oracle at y,
then it is also a (L′y, δy) inexact oracle at y, with L′y ≥ Ly.

We next give the de�nition of an inexact projection. First, denote the
exact (Euclidean) projection of y ∈ Rd on X by PX{y} = arg minz∈X ∥z − y∥.

De�nition 6.2 (Inexact projection). We say that x ∈ Rd is a ζ-inexact
projection of y ∈ Rd on X if: 1) x ∈ X ; and 2) ∥x − PX{y}∥ ≤ ζ.

Inexact projected Nesterov gradient. We consider the following
inexact iteration of the Nesterov gradient method to minimize f(x) over
X . For a given point (x(k − 1), y(k − 1)) ∈ X × Rd, let (f̂k−1, ĝk−1) be a

(Lk−1, δk−1) inexact oracle at y(k−1); further, let P̂k {y(k − 1) − 1
Lk−1

ĝk−1} be

a ζk−1-inexact projection of y(k − 1) − 1
Lk−1

ĝk−1. Construct x(k), y(k) as:

x(k) = P̂k {y(k − 1) − 1

Lk−1

ĝk−1} , y(k) = x(k) + βk−1 (x(k) − x(k − 1)) .(6.42)

With respect to (6.42), we are interested in two choices of X : (a) compact
constraint set X , in which case ζk−1 may be non-zero; and (b) unconstrained
optimization X = Rd, in which case we assume ζk−1 = 0.

Lemma 5 (Progress per iteration). Consider (6.42) for some k = 1,2, ... and
let x● be arbitrary point in X . Then:

1. Compact constraint set. If X is compact with ∥x∥ ≤ B, for all x ∈ X ,
we have:

(k + 1)2 (f(x(k)) − f(x●)) + 2Lk−1∥v(k) − x●∥2 (6.43)

≤ (k2 − 1) (f(x(k − 1)) − f(x●)) + 2Lk−1∥v(k − 1) − x●∥2 (6.44)

+ (k + 1)2δk−1 + (k + 1)2ηk−1,
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where θk = 2/(k + 2) and

v(k − 1) = y(k − 1) − (1 − θk−1)x(k − 1)
θk−1

(6.45)

ηk−1 = Lk−1ζ
2
k−1 +Lk−1 (6B + ∥ĝk−1∥

Lk−1

) ζk−1 (6.46)

2. Unconstrained case. If X = Rd and ζk−1 = 0, then (6.43) holds with
ηk−1 = 0.

6.4.3 Convergence rate analysis

Inexact oracle framework

To analyze the convergence rate of the projected mD�NC algorithm, we
use the framework of inexact projected Nesterov gradient method [32]. We
consider the global average x(k) ∶= 1

N ∑
N
i=1 xi(k), the disagreement at node i:

x̃i(k) ∶= xi(k)−x(k), and the aggregate quantities x(k) ∶= (x1(k)⊺, ..., xN(k)⊺)⊺
and x̃(k) ∶= (x1(k)⊺, ..., xN(k)⊺)⊺.We also consider the counterparts for yi(k),
x
(a)
i (k), x(b)

i (k), and x(c)
i (k), de�ned analogously.

We next derive the update equation for (x(k), y(k)). From Algorithm 4,
steps 2 and 3, we have that x(a)(k) = x(c)(k) = y(k) − α

N ∑
N
i=1∇fi(yi(k − 1));

from the latter and steps 4 and 5:

x(k) = P̂k {y(k − 1) − α

N

N

∑
i=1

∇fi(yi(k − 1))} (6.47)

y(k) = x(k) + βk−1 (x(k) − x(k − 1)) , (6.48)

where we de�ne the inexact projection P̂k by:

P̂k {y(k − 1) − α

N

N

∑
i=1

∇fi(yi(k − 1))} = P̂k {x(c)(k)} ∶= 1

N

N

∑
i=1

PX {x(c)
i (k)} .

(6.49)

As with mD�NC for unconstrained optimization, algorithm (6.47)�(6.48)
can be viewed as an inexact projected Nesterov gradient algorithm. Both
the �gradient direction� and the projection step are inexact. With respect
to �gradient direction� inexactness, it can be shown that we have that the
�amount of inexactness� is δk−1 ∶= L∥ỹ(k − 1)∥2. The next Lemma quanti�es
the projection inexactness.
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Lemma 6. Consider the projected mD�NC algorithm with step size α ≤
1/(2L). Then, x(k) is ζk−1�inexact projection of y(k − 1)− α

N ∑
N
i=1∇fi(yi(k −

1)), with
∥ζk−1∥ ≤

1√
N

∥x̃(c)(k)∥. (6.50)

That is: 1) x(k) ∈ X , and 2) ∥x(k)−PX {y(k − 1) − α
N ∑

N
i=1∇fi(yi(k − 1))} ∥ ≤

ζk−1.

We �rst prove claim 1 (x(k) ∈ X ). Note that x(k) = 1
N ∑

N
i=1PX {x(c)

i (k)},
and so it belongs to X as a convex combination of the points that belong to
X . We next prove claim 2. Using x(c)(k) = y(k − 1) − α

N ∑
N
i=1∇fi(yi(k − 1)),

equations (6.47) and (6.49), and expressing x(k) = 1
N ∑

N
i=1PX {x(c)

i (k)}:

∥x(k) − PX {y(k − 1) − α

N

N

∑
i=1

∇fi(yi(k − 1))} ∥ ≤ (6.51)

1

N

N

∑
i=1

∥PX {x(c)
i (k)} − PX {x(c)(k)} ∥. (6.52)

Consider the right hand side in (6.51). Expressing x
(c)
i (k) = x(c)(k)+ x̃(c)

i (k),
and using the non-expansiveness property of projection: ∥PX{u} −PX{v}∥ ≤
∥u − v∥, for all u, v ∈ Rd, obtain:

∥x(k) − PX {y(k − 1) − α

N

N

∑
i=1

∇fi(yi(k − 1))}∥ ≤ 1

N

N

∑
i=1

∥x̃(c)i (k)∥ (6.53)

≤ 1√
N

∥x̃(c)(k)∥ , (6.54)

where the last inequality follows by convexity of u↦ u2: ( 1
N ∑

N
i=1 ∥x̃

(c)
i (k)∥)

2
≤

1
N ∑

N
i=1 ∥x̃

(c)
i (k)∥2 = 1

N ∥x̃(c)∥2.

Disagreement estimate

We next �nd the bounds on ∥ỹ(k)∥ and ∥x̃(c)(k)∥, in order to characterize
the oracle inexactness δk and the projection inexactness ζk.

Lemma 7. Consider the projected mD�NC algorithm , and the step size
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α ≤ 1/(2L). Then, for all k = 1,2, ...:

(E [∥x̃(c)(k)∥])2 ≤ E [∥x̃(c)(k)∥2] ≤ N (3B + αG)2

k8
(6.55)

(E [∥ỹ(k)∥])2 ≤ E [∥ỹ(k)∥2] ≤ 5N (3B + αG)2

k8
. (6.56)

The left inequalities in (6.55) and (6.56) follow, e.g., from the Jensen
inequality h (E[Z]) ≤ E[h(Z)], with h(z) = z2.

We now prove the two right inequalities. We conduct the proof for d = 1,
while the extension to generic d is straightforward.

The proof has four steps. In Step 1, we upper bound ∥y(k)∥. In Step 2,
we prove (6.55). In Step 3, we upper bound E [∥x̃(k)∥2] . Finally, in Step 4,
we prove (6.56).

Step 1: Bounding ∥y(k)∥. We �rst prove a bound for ∥ỹ(k)∥. Consider
step 3 in Algorithm 4 and �x arbitrary node i. Note that x

(b)
i (k − 1) belongs

to X , because it is a convex combination of the points xj(k − 1), j = 1, ...,N ,
that belong to the set X . Next, using ∣βk−1∣ ≤ 1:

∥yi(k)∥ ≤ 2∥xi(k)∥ + ∥x(b)
i (k − 1)∥ ≤ 3B,

as xi(k), x(b)
i (k − 1) ∈ X , for all k. Thus, we obtain the desired bound:

∥y(k)∥ ≤ 3
√
NB, for all k. (6.57)

Step 2: Proof of (6.55). Recall the de�nition of W(k) in (6.38). and
W̃(k) =W(k)− J . From steps 2 and 3 in Algorithm 4, note that x̃(c)(k) can
be written as:

x̃(c)(k) = W̃(k)(I − J) (y(k − 1) − α∇F (y(k − 1))) .

Take the norm, use the sub-multiplicative and sub-additive properties
of norms, and square the obtained inequality. Further, use ∥I − J∥ = 1,
inequality (6.57), ∥∇F (y(k − 1))∥ ≤

√
NG, and the Jensen inequality, to

obtain (6.55).

Step 3: Upper bounding E [∥x̃(k)∥2]. For x̃i(k) ∶= xi(k)−x(k), using



68 CHAPTER 6. NESTEROV-LIKE METHODS

xi(k) = PX {x(c)
i (k)} and x(k) = 1

N ∑
N
j=1PX{xj(k)}, we have:

∥x̃i(k)∥ = ∥PX{x(c)
i (k)} − 1

N

N

∑
j=1

PX{x(c)
j (k)}∥ (6.58)

= ∥ 1

N

N

∑
j=1

(PX{x(c)
i (k)} − PX{x(c)

j (k)})∥

≤ 1

N

N

∑
j=1

∥PX{x(c)
i (k)} − PX{x(c)

j (k)}∥ (6.59)

≤ 1

N

N

∑
j=1

∥x(c)
i (k) − x(c)

j (k)∥ (6.60)

≤ 1

N

N

∑
j=1

(∥x̃(c)
i (k)∥ + ∥x̃(c)

j (k)∥) (6.61)

≤ ∥x̃(c)
i (k)∥ + 1√

N
∥x̃(c)(k)∥ . (6.62)

The left inequality in (6.59) is by convexity of norms, while the right in-
equality is by the non-expansiveness of the Euclidean projection: ∥PX{a} −
PX{b}∥ ≤ ∥a−b∥, for all a, b ∈ Rd. The left inequality in (6.61) is by expressing

∥x(c)
i (k)−x(c)

j (k)∥ = ∥(x(c)
i (k)−x(c)(k))+(x(c)(k)−x(c)

j )∥ ≤ ∥x(c)
i (k)−x(c)(k)∥+

∥x(c)(k)−x(c)
j )∥; and the right inequality in (6.61) is by ( 1

N ∑
N
i=1 ∥x̃

(c)
j (k)∥)

2
≤

1
N ∑

N
i=1 ∥x̃

(c)
j (k)∥2 = 1

N ∥x̃(c)(k)∥2. Summing the squared right inequalities in (6.61)
over i = 1, ...,N , and using

(∥x̃(c)
i (k)∥

2
+ 1√

N
∥x̃(c)(k)∥)

2

≤ 2 ∥x̃(c)
i (k)∥

2
+ 2

N
∥x̃(c)(k)∥2

,

we obtain:
∥x̃(k)∥2 ≤ 4 ∥x̃(c)(k)∥2.

Thus, from (6.55), we obtain the desired bound:

(E [∥x̃(k)∥])2 ≤ E [∥x̃(c)(k)∥2] ≤ 4N(3B + αG)2

k8
. (6.63)

Step 4: Proof of (6.56). From step 5 in Algorithm 4, we have:

ỹ(k) = (1 + βk−1)x̃(k) − βk−1x̃
(b)(k − 1)

= (1 + βk−1)x̃(k) − βk−1W̃(k) (I − J)x(k − 1).
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Thus, using ∥βk−1∥ ≤ 1:

∥ỹ(k)∥ ≤ 2 ∥x̃(k)∥ + ∥W̃(k)∥ ∥x̃(k − 1)∥.

Squaring the latter inequality, using (a + b)2 ≤ 2a2 + 2b2, (6.63), and ∥(I −
J)x(k − 1)∥ ≤

√
NB, we obtain:

∥ỹ(k)∥2 ≤ 4 ∥x̃(k)∥2 + 2∥W̃(k)∥2 ∥x̃(k − 1)∥2.

Taking expectations, using (6.63), and using Jensen's inequality, we �nally
obtain (6.56).

Convergence rate

We are now ready to state the convergence rate result for the projected mD�
NC algorithm.

Theorem 6.2. Consider the projected mD�NC algorithm, with the constant
step size α ≤ 1/(2L). Let ∥x(0) − x⋆∥ ≤ R, R ≥ 0. Then, after

K =
k

∑
t=1

τt ≤
1

− log µ̄
(4(k + 1) log(k + 1) + (k + 1) logN)

communication rounds, i.e., after k outer iterations, we have, at any node i:

E [f(xi(k)) − f⋆]
N

≤ 1

k2
( 2

α
R2 + a′1LB2 + a′2L(6B + αG)2 + αG2) , (6.64)

k = 1,2, ..., (6.65)

where a′1 and a′2 are universal constants independent of system parameters.

[Proof outline] We apply Lemma 5 (a) with x● ≡ x⋆. Further, as δk ≤
L∥ỹ(k)∥2. we have, by Lemma 6, and Lemma 7: δk ≤ L∥ỹ(k)∥2 = 9NLB2

k8 ,

ζk ≤ ∥x̃(b)(k)∥√
N

≤ 3B+αG
k4 . Finally, set Lk−1 ≡ N/α, and note that ∥ĝk∥ =

∥∑N
i=1∇fi(yi(k))∥ ≤ NG, for all k, as yi(x) ∈ X ′, for all k. We now have all

the relevant quantities set, and the proof proceeds by applying Lemma 5 (1).

6.5 Proof of Lemma 5 (1)

We perform the proof in three steps.
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Step 1. We �rst prove the following auxiliary equality:

θk−1v(k) = x(k) − (1 − θk−1)x(k − 1). (6.66)

Using the de�nition of v(k) in (6.45), θk = 2/(k+2), and βk−1 = (k−1)/(k+2):

v(k) = k + 2

2
(x(k) + k − 1

k + 2
x(k) − k − 1

k + 2
x(k − 1) − k

k + 2
x(k))

= k + 1

2
x(k) − k − 1

2
x(k − 1).

Multiplying the expression on the right hand side of the last equality by
θk−1 = 2/(k + 1), the result follows.

Step 2. We prove the following relation:

f(x(k)) ≤ f(z) +Lk−1(x(k) − y(k − 1))⊺(z − x(k)) + Lk−1

2
∥x(k) − y(k − 1)∥2

(6.67)

+ δk−1 + ηk−1, for all z ∈ X . (6.68)

Because x(k) ∈ X (by construction), we have, using (6.41):

f(x(k)) ≤ f̂k−1 + ĝ⊺k−1 (x(k) − y(k − 1))+ Lk−1

2
∥x(k)−y(k−1)∥2 + δk−1. (6.69)

Denote by p ∶= PX {y(k − 1) − 1
Lk−1

ĝk−1} . We next upper bound the term

Π(z) ∶= Lk−1 (y(k − 1) − ĝk−1

Lk−1

− x(k))
⊺
(x(k) − z) ,

for arbitrary z ∈ X . Adding and subtracting p in the second and third factors
of Π(z), obtain:

Π(z) = Lk−1 (y(k − 1) − ĝk−1

Lk−1
− p)

⊺
(p − z)

+ Lk−1 (y(k − 1) − ĝk−1

Lk−1
− p)

⊺
(x̂(k) − p) (6.70)

+ Lk−1(p − x̂(k))⊺(p − z) −Lk−1∥p − x̂(k)∥2

≥ −Lk−1∥y(k − 1) − ĝk−1

Lk−1
− p∥ ∥x̂(k) − p∥ (6.71)

− Lk−1∥p − x̂(k)∥ ∥p − z∥ −Lk−1∥p − x̂(k)∥2. (6.72)

The inequality follows by: 1) upper bounding the last three summands of
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Π(z) via u⊺v ≥ −∥u∥ ∥v∥, for all u, v ∈ Rd; and 2) using the fact that the �rst
summand is nonnegative by the following projection property:
(w − PX{w})⊺ (pX{w} − z) ≥ 0, for all z ∈ X . We next upper bound ∥x(k) −
p∥, ∥y(k − 1)− ĝk−1

Lk−1
− p∥, and ∥p− z∥. Upper bound ∥y(k − 1)− ĝk−1

Lk−1
− p∥ using

the sub-additive property of norms:

∥y(k − 1) − ĝk−1

Lk−1

− p∥ ≤ ∥y(k − 1)∥ + ∥ĝk−1∥
Lk−1

+ ∥p∥.

Next, note that ∣βk−1∣ ≤ 1, and because x(k − 1), x(k) ∈ X : ∥y(k − 1)∥ ≤ 3B.
Also, because x(k), p ∈ X , we have ∥x(k)∥ ≤ B and ∥p∥ ≤ B. Using the latter
bounds on ∥y(k − 1)∥, ∥x(k)∥, and ∥p∥:

∥x(k) − p∥ ≤ ζk−1, ∥y(k − 1) − ĝk−1

Lk−1

− p∥ ≤ 4B + ∥ĝk−1∥
Lk−1

, ∥z − p∥ ≤ 2B, (6.73)

where the bound on ∥x(k) − p∥ is by the algorithm construction. Apply-
ing (6.73) to (6.71), obtain:

0 ≤ Π(z) + ηk−1 = Lk−1 (y(k − 1) − ĝk−1

Lk−1

− x(k))
⊺
(x(k) − z) + ηk−1, (6.74)

where ηk−1 is given in (6.46). From property (6.40): f̂k−1 ≤ f(z) + ĝ⊺k−1(y(k −
1) − z), and so, using the last equation and adding (6.69) and (6.74), the
claim (6.67) follows.

Step 3. We �nalize the proof of Lemma 5 by proving (6.43). We start
by using relation (6.67). Namely: 1) setting z = x(k − 1) in (6.67) and
multiplying inequality (6.67) by 1 − θk−1; 2) setting z = x● in (6.67) and
multiplying inequality (6.67) by θk−1; and 3) adding the corresponding two
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inequalities:

θk−1 {f(x(k)) − f(x●)} + (1 − θk−1) {f(x(k)) − f(x(k − 1))}
= {f(x(k)) − f(x●)} − (1 − θk−1) {f(x(k − 1)) − f(x●)}
≤ θk−1Lk−1 (x(k) − y(k − 1))⊺(x● − x(k)) (6.75)

+ (1 − θk−1)Lk−1 (x(k) − y(k − 1))⊺(x(k − 1) − x(k))

+ Lk−1

2
∥x(k) − y(k − 1)∥2 + δk−1 + ηk−1

= Lk−1(x(k) − y(k − 1))⊺(θk−1x
● + (1 − θk−1)x(k − 1) − x(k)) (6.76)

+ Lk−1

2
∥x(k) − y(k − 1)∥2 + δk−1 + ηk−1

= Lk−1

2
(2(x(k) − y(k − 1))⊺(θk−1x

● + (1 − θk−1)x(k − 1) − x(k))

+ ∥x(k) − y(k − 1)∥2) + δk−1 + ηk−1. (6.77)

Denote by:

Mk−1 = (2(x(k)−y(k−1))⊺(θk−1x
●+(1−θk−1)x(k−1)−x(k))+∥x(k)−y(k−1)∥2).

Then, inequality (6.77) is written simply as:

{f(x(k)) − f(x●)}−(1−θk−1) {f(x(k − 1)) − f(x●)} ≤ Lk−1

2
Mk−1+δk−1+ηk−1.

(6.78)
Now, we simplify the expression forMk−1 as follows. Using the identity:

∥x(k) − y(k − 1)∥2 = 2(x(k) − y(k − 1))⊺x(k) + ∥y(k − 1)∥2 − ∥x(k)∥2,

we have:

Mk−1 = 2(x(k) − y(k − 1))⊺(θk−1x
● + (1 − θk−1)x(k − 1)) − ∥x(k)∥2 + ∥y(k − 1)∥2

= ∥y(k − 1) − ((1 − θk−1)x(k − 1) + θk−1x
●)∥2 (6.79)

− ∥x(k) − ((1 − θk−1)x(k − 1) + θk−1x
●)∥2

= θ2
k−1∥v(k − 1) − x●∥2 − θ2

k−1∥v(k) − x
●∥2, (6.80)

where the last equality follows by the de�nition of v(k−1) in (6.45) and by
the identity (6.66). Now, combining (6.78) and (6.80):

(f(x(k)) − f(x●)) − (1 − θk−1)(f(x(k − 1)) − f(x●))

≤
Lk−1θ2

k−1

2
(∥v(k − 1) − x●∥2 − ∥v(k) − x●∥2) + δk−1 + ηk−1.
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Finally, multiplying the last equation by 4
θ2
k−1

, and using θk−1 = 2/(k + 1), we
get the result.

The major part of this chapter is taken practically unaltered from the
PhD thesis [18].
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Chapter 7

Conclusion

This manuscript covered relevant concepts to help gain understanding of op-
timization methods for distributed non-smooth optimization. Chapter 1 re-
viewed relevant concepts and properties of convex functions. Chapter 2 con-
sidered elements of subgradient calculus and introduced subgradient meth-
ods. Chapter 3 was concerned with duality theory. The material in Chapters
1-3 provided a required background for understanding of design and analy-
sis of parallel and distributed optimization methods for convex (non)smooth
problems. Chapter 4 introduced some common communication and compu-
tational (optimization) models and provided several application examples,
and it considered dual distributed methods. Chapter 5 considered primal
(sub)gradient methods. Finally, Chapter 6 was concerned with the primal
distributed methods based on the Nesterov gradient method.
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