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Foreword

This book covers the content of Fundamentals of Numerical Opti-
mization course at the Master program Applied Mathematics - Data
Science at Department of Mathematics and Informatics, Faculty of
Sciences. It provides insights into some of the main methods of non-
linear optimization through a sequence of theoretical considerations,
algorithms and exercises. The subject is too wide to be covered within
one book and thus the content of the book is mainly determined by the
course. Our intention was to present the material at a very accessible
level assuming only the undergraduate mathematical background.

The book covers some topics of unconstrained and constrained op-
timization problems and leans heavily on the book ”Elementos de
programação não-linear” by Ana Friedlander. The main advantage of
the aforementioned book is the set of exercises designed to facilitate
understanding of the presented material. The set of carefully designed
exercises is almost completely taken from that book and in our opin-
ion presents the fundamental tool for understanding the concepts and
ideas presented theoretically.

Novi Sad, January 2019 Ana Friedlander, Nataša Krejić,
Nataša Krklec Jerinkić
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Chapter 1

Nonlinear optimization
problems

We consider problems of the form

min
x∈S

f(x), (1.1)

where f : D → R and D,S ⊆ Rn. Vector x is often referred to as
the decision variable and its dimension n represents the dimension of
the problem. The function f is called the objective function and D
represents its domain. We usually have that D = Rn, but it can be
R+ for example if the objective function is f(x) = ln(x). On the
other hand, S is called the feasible set and it is often a true subset of
Rn. This set represents the constraints of the optimization problem
stated above. If S = Rn then we say that the problem (1.1) is an
unconstrained optimization problem.

If S is a true subset of Rn, then the problem (1.1) is called con-
strained optimization problem. One of the simplest constraints are
the so called box constraints where

S = {x ∈ Rn | xi ∈ [li, ui], i = 1, 2, ..., n}
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These constraints are often represented as x ∈ [l, u] and the compo-
nents of the vectors l and u are in R

⋃
{±∞}. Furthermore, S can be

a hyperplane
S = {x ∈ Rn | xTa ≤ 0}

for some a ∈ Rn or some ball in Rn

S = {x ∈ Rn | ‖x− b‖ ≤ c},

where b ∈ Rn, c ∈ R. In general, the constraints are stated as follows

S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}, (1.2)

where h : Rn → Rm represents the equality constraints and g : Rn →
Rp determines the inequality constraints. Both of these constraints are
explicit constraints. On the other hand, if the domain of the objective
function is a true subset of Rn, then we say that D represents implicit
constraints. Implicit constraints can be produced by the domain of h
and g as well, as discussed in Chapter 9.

Solving the optimization problem means finding the best feasible
decision variable - the one that minimizes the objective function on the
feasible set. Notice that maximizing f on S is equivalent to minimizing
−f on S so, without loss of generality, we can identify optimization
with minimization.

Important question is whether the optimization problem has a so-
lution. The answer is not trivial, but the following theorem states the
assumptions under which we are certain that a solution exists.

Theorem 1.1 (Bolzano-Weierstrass) Every real, continuous function
attains its global minimum on any compact subset of Rn.

The consequence of this theorem is that the problem (1.1) has a
solution if the objective function f is continuous and the feasible set
S is compact, i.e., bounded and closed. Now, let us define two types
of solutions of the considered problem.



1.1 Exercises 9

Definition 1 A point x∗ is a global solution of the problem (1.1) if
f(x∗) ≤ f(x) for every x ∈ S. If f(x∗) < f(x) for every x ∈ S, x 6=
x∗, then x∗ is a strict global solution.

Definition 2 A point x∗ is a local solution of the problem (1.1) if
there exists ε > 0 such that f(x∗) ≤ f(x) for every x ∈ S such that
‖x − x∗‖ ≤ ε. If f(x∗) < f(x) for every x ∈ S, x 6= x∗ such that
‖x− x∗‖ ≤ ε, then we say that x∗ is strict local solution.

Roughly speaking, a local minimizer is the best feasible point in its
own vicinity. On the other hand, a global minimizer is the best point of
all feasible points. Finding a global minimizer is usually very hard, so
local minimizers are of great interest in nonlinear optimization. In the
next chapter we will discuss some basic characterizations of global and
local solutions for unconstrained optimization problems. Analogous
characterizations for the constrained case will be considered latter.

1.1 Exercises

1. Let A ∈ Rn×n and x ∈ Rn. For each of the following statements
provide a proof or a counter example.

(a) There exists x 6= 0 such that Ax = 0 if |A| = 0.

(b) There exists x 6= 0 such that Ax = 0 only if |A| = 0.

(c) There exists x 6= 0 such that Ax = 0 if and only if |A| = 0.

2. Let A ∈ Rm×n where m ≥ n and rank(A) = n. Prove that ATA
is nonsingular.

3. Consider the equations

n∑
j=1

ai,jxj = bi, i = 1, 2, ..., n− 1, (1.3)
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or equivalently, Ax = b where A ∈ R(n−1)×n, b ∈ Rn−1 and
x ∈ Rn. The set of points which satisfy (1.3) represents a line in
Rn. This line can be written as

y = x+ λd,

where λ ∈ R, d, x ∈ Rn. Discuss the choice of x and d.

4. Find the eigenvalues and eigenvectors of A = uuT where u ∈ Rn.

5. Let A ∈ Rm×n and b ∈ Rm. For x ∈ Rn we define q(x) =
f(Ax + b), where f : Rm → R. Calculate the gradient and the
Hessian of q.

6. Draw the level sets of the following quadratic functions f : R2 →
R.

(a) f(x1, x2) = x2
1 − x2

2 − x1 + x2 − 1.

(b) f(x1, x2) = x2
1 + x2

2 + 2x1x2.

(c) f(x1, x2) = x2
1 + x2

2 − x1x2.

(d) f(x1, x2) = x1x2.

7. Explain the geometry of the level sets for

f(x) =
1

2
xTAx+ bTx+ c,

where A = AT ∈ R2×2, b ∈ R2 and c ∈ R given that:

(a) A is positive definite, i.e., A � 0.

(b) A is positive semidefinite (A � 0) and there exists x such
that Ax+ b = 0.

(c) A � 0 and there is no x such that Ax+ b = 0.
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(d) A is indefinite and nonsingular.

8. Prove that the eigenvalues of a symmetric matrix are positive if
and only if the matrix is positive definite.

9. Prove that a symmetric matrix is singular if and only if zero is
its eigenvalue.

10. Prove that if λ is an eigenvalue of a nonsingular symmetric ma-
trix A, then λ−1 is an eigenvalue of A−1.

11. Let A ∈ Rm×n where m ≤ n and rank(A) = k. Let us denote
the null space of A by Null(A) and the subspace of images by
Im(A).

(a) Prove that Null(A)⊥Im(AT ).

(b) Prove that dim(Null(A)) = n− k.

(c) Prove that Rn = Null(A)⊕ Im(AT ).



Chapter 2

Optimality conditions for
unconstrained problems

Let us consider the unconstrained optimization problem

min
x∈Rn

f(x), (2.1)

where f : Rn → R. In this chapter, we are stating necessary and
sufficient conditions for a solution of problem (2.1). These conditions
are important not only theoretically, but also from practical point of
view. Vast majority of methods for solving unconstrained optimization
problems are constructed to converge to points that satisfy necessary
optimality conditions stated below. On the other hand, once we find
a point that satisfies the necessary conditions the sufficient conditions
help us to decide whether this candidate is a true minimizer. Depend-
ing on the order of derivatives, we distinguish first and second order
necessary conditions, while the sufficient conditions are of the second
order.

Recall that if the function is one dimensional, i.e., f : R→ R, then
the solution x∗ of (2.1) satisfies f ′(x∗) = 0. Moreover, if the function
is twice continuously differentiable, then f ′′(x∗) ≥ 0.
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Let us state the first order necessary conditions.

Theorem 2.1 Suppose that f ∈ C 1 (Rn). If x∗ is a local solution of
(2.1), then ∇f(x∗) = 0.

Proof. Suppose that x∗ is a local solution of (2.1). Let us consider
an arbitrary but fixed direction d ∈ Rn. Furthermore, define

φ(λ) := f(x∗ + λd).

Since x∗ is a local minimizer of f , we know that there exists ε > 0 such
that f(x∗) ≤ f(x∗ + λd) for every λ such that |λ| ≤ ε. This implies
that

φ(0) ≤ φ(λ)

for every |λ| ≤ ε. Thus, λ = 0 is a local minimizer of the function
φ : R→ R and we know that φ′(0) = 0. On the other hand,

φ′(λ) = ∇Tf(x∗ + λd)d,

so we conclude that
∇Tf(x∗)d = 0.

Since this equality holds for an arbitrary d ∈ Rn, we conclude that
∇f(x∗) is orthogonal to every vector d ∈ Rn and therefore∇f(x∗) = 0.

The point which satisfy the first order necessary conditions are
called stationary points.

The second order necessary conditions are the following.

Theorem 2.2 Suppose that f ∈ C 2 (Rn). If x∗ is a local solution of
(2.1), then

a) ∇f(x∗) = 0;
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b) ∇2f(x∗) � 0.

Proof. Suppose that x∗ is a local solution of (2.1). The first part of
the statement follows from the previous theorem. Now, let us consider
an arbitrary direction d ∈ Rn and define φ(λ) := f(x∗ + λd) as in the
previous proof. Following the same arguments, we conclude that λ = 0
is a local minimizer of φ. This implies φ′(0) = 0, but it also implies
φ′′(0) ≥ 0. Since the second derivative of φ is

φ′′(λ) = dT∇2f(x∗ + λd)d,

there follows that dT∇2f(x∗)d ≥ 0. As d is an arbitrary vector, we
conclude that dT∇2f(x∗)d ≥ 0 for every d ∈ Rn, i.e., the matrix
∇2f(x∗) is positive semidefinite, which completes the proof.

Finally, let us state the second order sufficient conditions. Notice
that the second condition is stronger than in the previous theorem
since the Hessian is assumed to be positive definite instead of just
positive semidefinite. Also, notice that the following theorem states
that the local minimizer is strict.

Theorem 2.3 Suppose that f ∈ C 2 (Rn). If

1. ∇f(x∗) = 0 and

2. ∇2f(x∗) � 0,

then x∗ is a strict local solution of (2.1).

Proof. The second condition states that the Hessian of the objec-
tive function is positive definite at x∗. Moreover, f ∈ C 2 (Rn) and the
Hessian ∇2f(x) is continuous. Thus, the Hessian matrix remains pos-
itive definite in some neighborhood of the point x∗. More precisely,
there exists ε > 0 such that ∇2f(x) � 0 for every x ∈ V = {y ∈
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Rn | ‖y − x∗‖ < ε}. Hence for any x 6= x∗ such that ‖x − x∗‖ ≤ ε1,
with ε1 < ε the Taylor expansion yields

f(x) = f(x∗)+∇Tf(x∗)(x−x∗)+
1

2
(x−x∗)T∇2f(x∗+t(x−x∗))(x−x∗),

for some t ∈ (0, 1). Notice that ∇2f(x∗ + t(x − x∗)) � 0. Moreover,
∇f(x∗) = 0 and the Taylor’s expansion implies that f(x) > f(x∗).
Since this inequality holds for any x such that ‖x − x∗‖ ≤ ε1, we
conclude that x∗ must be a strict local minimizer of function f .

2.1 Exercises

1. Let g : R → R be strictly increasing and f : Rn → R. Prove
that minimizing f(x) is equivalent to minimizing g(f(x)).

2. Solve
min
x∈Rn
‖Ax− b‖,

where A ∈ Rm×n and b ∈ Rm. Consider all possible cases and
give geometrical representation.

3. Let a1 ≤ a2 ≤ ... ≤ an. Solve the following problems

(a) minx∈Rn

∑n
i=1 |x− ai|.

(b) minx∈Rn maxi=1,...,n |x− ai|.
(c) minx∈Rn

∑n
i=1 |x− ai|2.

(d) maxx∈Rn

∏n
i=1 |x− ai|.

4. Consider the Rosenbrock function

f(x) = 100(x2 − x2
1)2 + (1− x1)2.



16 Optimality conditions for unconstrained problems

(a) Find the first and the second order derivative of f .

(b) Show that x∗ = (1, 1)T is a local minimizer.

(c) Prove that ∇2f(x) is singular if and only if x2−x2
1 = 0.005.

5. Find the stationary points of

f(x) = 2x3
1 − 3x2

1 − 6x1x2(x1 − x2 − 1).

Which are minimizers and which maximizers? Which of them
are local?

6. Prove that the function

f(x) = (x2 − x2
1)2 + x5

1

has one stationary point which is not local minimizer nor maxi-
mizer.

7. In order to approximate a function g on [0, 1] with a polynomial
p(x) = a0 + a1x+ ...+ anx

n, one minimizes the function

f(a) =

∫ 1

0

(g(x)− p(x))2dx,

where a = (a0, ..., an)T . Find the optimality conditions.

8. Consider the problem

min
x∈Rn

f(x) = x2
1 − x1x2 + 2x2

2 − 2x1 + ex1+x2 .

(a) Find the first order optimality conditions. Are they the
sufficient conditions as well? Why?

(b) The point x̃ = (0, 0)T is optimal?
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(c) Find a direction d̃ ∈ R2 such that ∇Tf(x̃)d̃ < 0.

(d) Minimize the function f along the direction d̃ starting from
x̃.

9. Let F : Rn → Rn be smooth. Moreover, let f(x) = ‖F (x)‖2.
Assume that x∗ is a local minimizer of f such that the Jacobian
∇F (x∗) is non-singular. Prove that x∗ is a solution of F (x) = 0.

10. Let
f(x) = (x3

1 + x2)2 + 2(x2 − x1 − 4)4.

Given x ∈ R2 and d ∈ R2\{0}, define g(λ) = f(x+ λd).

(a) Find g(λ) explicitly.

(b) For x = (0, 0)T and d = (1, 1)T find a minimizer of g.

11. Assume that
f(x) = (x1 − 1)2x2.

Consider the points of the form x̂ = (1, x2)T .

(a) Analyze the optimality conditions for these points.

(b) What can we say about x̂ based on (a)?

12. Let

f(x) =
1

2
xTQx− bTx,

where Q = QT ∈ Rn×n, Q > 0 and b ∈ Rn. Let x0, x1, ..., xn ∈
Rn and define δj = xj − x0 and γj = ∇f(xj) − ∇f(x0) for
j = 1, ..., n. Prove that if the vectors δ1, ..., δn are linearly inde-
pendent then

x∗ = xn − [δ1 | ... | δn]
(
[γ1 | ... | γn]

)−1∇f(xn)

is a global minimizer of f .
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13. The Frobenius norm of matrix A = [ai,j] ∈ Rm×n is defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
i,j.

For given A ∈ Rn×n find B which solves

min
B∈Rn×n,BT =B

‖A−B‖F .

14. If possible, find coefficients a and b such that

f(x) = x3 + ax2 + bx

has a local maximum at x = 0 and local minimum at x = 1.



Chapter 3

Convexity

The concept of convexity is very important in numerical optimization.
We distinguish two types of convexity - convexity of function and con-
vexity of set. One of the most important features of convex functions
is that every local minimizer is also a global minimizer of that func-
tion. On the other hand, if the set is convex then every line segment
connecting two points of the set remains within which is essential in
vast number of algorithms. We state the definitions below.

Definition 3 A set S ⊆ Rn is convex if for any x, y ∈ S and any
λ ∈ [0, 1] there holds λx+ (1− λ)y ∈ S.

One of the most representative convex set is ball. Box is also an
example of convex set. On the other hand, an example of a nonconvex
set would be a banana-shaped set. In that case, there is at least one
couple of points from that set such that the line segment determined
by the points is not entirely within the set, i.e., there exists λ ∈ (0, 1)
such that λx + (1 − λ)y 6∈ S. Next, we state the definition of convex
function.
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Figure 3.1: Convex and non-convex sets.
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Definition 4 Let S be a convex set. A function f : S → R is convex
on S if for any x, y ∈ S and any λ ∈ [0, 1] there holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Moreover, we say that the function is strictly convex if the previous
inequality is strict for all x 6= y and λ ∈ (0, 1).

For example, the function f(x) = x2 is strictly convex. On the
other hand, the function defined as f(x) = x2 for |x| > 1 and f(x) = 1
for |x| ≤ 1 is convex, but not strictly convex. We say that a function
is concave if the inequalities in the previous definition are opposite,
i.e., if we put ≥ (>) instead of ≤ (<). In other words, the function
f is concave if the function −f is convex and vice versa. Notice that
the linear function is both convex and concave at the same time.

One should also notice that the previous definition does not require
differentiability of the function f . Moreover, convex function can even
be discontinuous. However, if the function f is differentiable, we have
the following widely used characterization of convexity. Recall that
the directional derivative of function f at point x in direction d is
given by

∇Tf(x)d = lim
h→0+

f(x+ hd)− f(x)

h
.

Theorem 3.1 Suppose that f ∈ C 1 (S ) where S ⊆ Rn is a convex
set. Then, the function f is convex on S if and only if the following
inequality holds for all x, y ∈ S

f(y) ≥ f(x) +∇Tf(x)(y − x). (3.1)

Proof. First, let us assume that the function f is convex on S. Take
arbitrary x, y ∈ S and λ ∈ (0, 1). Define z(λ) := λy + (1− λ)x. Since
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the set S is convex, we know that z(λ) ∈ S for every λ ∈ [0, 1]. Now,
convexity of the function f implies that

f(z(λ)) ≤ λf(y) + (1− λ)f(x) (3.2)

and subtracting f(x) from both sides of the previous inequality we
obtain

f(z(λ))− f(x) ≤ λ(f(y)− f(x)).

Notice that z(λ) = x+λ(y−x). Now, dividing the previous inequality
by λ we get

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x).

Taking the limit when λ→ 0+ we obtain

limλ→0+
f(x+ λ(y − x))− f(x)

λ
≤ limλ→0+(f(y)− f(x)).

and

∇Tf(x)(y − x) ≤ f(y)− f(x)

which is equivalent to (3.1).
Let us assume that (3.1) holds. Again, we take arbitrary x, y ∈ S

and define z(λ) as above. Applying (3.1) two times we obtain

f(x) ≥ f(z(λ)) +∇Tf(z(λ))(x− z(λ)) (3.3)

and

f(y) ≥ f(z(λ)) +∇Tf(z(λ))(y − z(λ)). (3.4)

Notice that x− z(λ) = λ(x− y) and y − z(λ) = (1− λ)(y − x). Now,
multiplying (3.3) with 1−λ and (3.4) with λ and adding them together
we obtain (3.2) which completes the proof.
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The previous characterization implies, for f : R → R, that the
function is always above the tangent. Following the same ideas as in
the second part of the proof of Theorem 3.1, we can prove the following
characterization of strictly convex functions.

Theorem 3.2 Suppose that f ∈ C 1 (S ) where S ⊆ Rn is a convex
set. If

f(y) > f(x) +∇Tf(x)(y − x)

for all x, y ∈ S, x 6= y, the function f is strictly convex on S.

Now, we give another important characterization of convex func-
tions. Recall that the Landau small o is defined as

lim
h→0

o(h)

h
= 0.

Theorem 3.3 Suppose that f ∈ C 2 (S ) where S ⊆ Rn is a convex
set. Then, the following statements hold.

a) If ∇2f(x) � 0 for every x ∈ S, then f is convex on S.

b) If ∇2f(x) � 0 for every x ∈ S, then f is strictly convex on S.

c) If S is open and f is convex on S, then ∇2f(x) � 0 for every
x ∈ S.

Proof.

a) Assume that ∇2f(x) � 0 for every x ∈ S. Let us take arbitrary
x, y ∈ S. Then, due to Taylor’s expansion, there exists z ∈ S
such that

f(y) = f(x) +∇Tf(x)(y − x) +
1

2
(y − x)T∇2f(z)(y − x).

Since ∇2f(z) � 0, we obtain f(y) ≥ f(x) +∇Tf(x)(y − x) and
the function f is convex according to Theorem 3.1.
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b) Using the same arguments as in part 1. we obtain f(y) > f(x)+
∇Tf(x)(y − x) and Theorem 3.2 implies that the function f is
strictly convex.

c) Let us take an arbitrary x ∈ S and an arbitrary d ∈ Rn. Since
S is open, there exists h̄ > 0 such that x + hd remains in S for
every 0 ≤ h ≤ h̄. Furthermore, we have

f(x+ hd) = f(x) + h∇Tf(x)d+
1

2
h2dT∇2f(x)d+ o(h2‖d‖2).

Since the function f is assumed to be convex on S, it follows from
Theorem 3.1 that f(x+ hd) ≥ f(x) + h∇Tf(x)d and therefore,

1

2
h2dT∇2f(x)d+ o(h2‖d‖2) ≥ 0.

This inequality holds for any h small enough, so dividing the
previous inequality by h2‖d‖2 and letting h → ∞ we obtain
that dT∇2f(x)d must be nonnegative. The vector d is arbitrary
and we conclude that ∇2f(x) � 0. Finally, the point x is an
arbitrary point from S and we conclude that ∇2f(x) � 0 for
every x ∈ S.

Next, we prove an important property of convex functions.

Theorem 3.4 Suppose that f is convex on a convex set S. Then,
every local minimizer of the function f is also the global minimizer.

Proof. We prove this statement by contradiction. Let us assume
that x∗ is a local, but not global minimizer of f . Then, there exists
y∗ such that f(y∗) < f(x∗). Moreover, the convexity implies that for
any λ ∈ (0, 1) we have

f(x∗+λ(y∗−x∗)) = f(λy∗+(1−λ)x∗) ≤ λf(y∗)+(1−λ)f(x∗) < f(x∗).
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Therefore, one can always find a small enough λ, i.e., the point z =
x∗+λ(y∗−x∗) in an arbitrary small vicinity of the point x∗ such that
f(z) < f(x∗) which is in contradiction with the assumption that x∗ is
a local minimum.

We give two more varieties of convex functions.

Definition 5 A function f is strongly convex with parameter m > 0
on a convex set S if for any x, y ∈ S and any λ ∈ [0, 1] there holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)−m1

2
λ(1− λ)‖x− y‖2.

If the function f is differentiable, then one can state another char-
acterization of a strongly convex function. If the following holds for
every x, y ∈ S

f(y) ≥ f(x) +∇Tf(x)(y − x) +
m

2
‖x− y‖2,

then the function f is strongly convex with parameter m > 0 on
a convex set S. Notice that the strong convexity implies the strict
convexity. Moreover, if f ∈ C 2 (S ), then the function is strongly
convex on S with parameter m > 0 if ∇2f(x) � mI for every x ∈ S.
In other words, the minimal eigenvalue of the Hessian is uniformly
bounded away from zero on S.

Definition 6 A function f is quasi-convex on a convex set S if for
any x, y ∈ S and any λ ∈ [0, 1] there holds

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

Every convex function is also a quasi-convex. On the other hand,
concave function can be quasi-convex, for example f(x) = ln x. An
example of a function which is not quasi-convex is f(x) = sinx.
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3.1 Exercises

1. Show that the intersection of convex sets is a convex set.

2. Prove that S = {x ∈ Rn | ‖x‖ ≤ c} is a convex set.

3. Verify that the following functions are convex.

(a) f(x) = max{g(x), h(x)}, where g and h are convex.

(b) t(x) =
∑n

i=1 x
2
i .

(c) s(x) = exp(f(x)), where f : Rn → R is convex and f ∈
C 2 (Rn).

4. Sketch the level sets of convex functions. What kind of property
do they have? Prove that property.

5. Let S be a convex subset of Rn and

f(y) = min
x∈S
‖y − x‖.

This function is convex. Prove this statement for the special
case when

S = {x ∈ R2 | ax1 + bx2 = c}.
Provide a geometrical representation.

6. Prove Theorem 3.2.

7. Suppose that f is convex on a convex set S. Prove that the set
of minimizers of f is a convex set.

8. Suppose that f ∈ C 1 (S ) is convex on a convex set S. If x∗ ∈ S
is such that for every y ∈ S

∇Tf(x∗)(y − x∗) ≥ 0,

then x∗ is a global minimizer of f on S. Prove this statement.
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9. Find an example of a strictly convex function with the Hessian
which is not positive definite, but it is only positive semidefinite.

10. Suppose that f ∈ C 2 (S ), S is convex and ∇2f(x) � mI for
every x ∈ S. Prove that the function f is strongly convex.

11. A function f is called quasi-concave on a convex set S if for any
x, y ∈ S and any λ ∈ [0, 1] there holds

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}.

Show that a monotone function f : R→ R is both quasi-convex
and quasi-concave.



Chapter 4

Convergence rates

In the subsequent sections we will consider numerical algorithms for
solving (1.1). More precisely, we will analyze iterative procedures that
generate a sequence {xk}k∈N of approximate solutions of the problem
under consideration. Let us denote a solution of the problem (1.1)
by x∗. Sometimes, x∗ represents only a local minimizer or just a
stationary point. Now, let us assume that the sequence generated by
the algorithm converges to that point, i.e.,

lim
k→∞

xk = x∗.

This means that, in general, we need an infinite sequence to reach
x∗ and for a finite k, the point xk will be in some neighborhood of
the solution for k large enough. Since we can perform only finitely
many iterations in practical applications, the velocity of approaching
to x∗ is highly relevant. Therefore, besides the convergence itself, the
convergence rate is one of the key issues for numerical methods. We
state the most important definitions bellow.

Definition 7 Let limk→∞ x
k = x∗. Then the sequence {xk}k∈N con-

verges to x∗
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a) linearly, if there exists µ ∈ (0, 1) such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= µ;

b) superlinearly, if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0;

c) with order p > 1, if there exists M > 0 such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= M.

The linear convergence defined above is often referred to as Q-linear
convergence. Also, it is often stated as follows: {xk}k∈N converges to
x∗ linearly if there exists µ ∈ (0, 1) such that

‖xk+1 − x∗‖ ≤ µ‖xk − x∗‖

for all k large enough. On the other hand, superlinear (or equiva-
lently, Q-superlinear) convergence is often characterized throughout
the sequence {µk}k∈N such that

‖xk+1 − x∗‖ ≤ µk‖xk − x∗‖

and limk→∞ µk = 0.
One of the most famous special cases of order p convergence is the

quadratic (that is, Q-quadratic) convergence - when p = 2. So, ac-
cording to the definitions above, {xk}k∈N converges to x∗ quadratically
if there exists an arbitrary large positive constant M such that

‖xk+1 − x∗‖ ≤M‖xk − x∗‖2,
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for k large enough. We say that the convergence rate is cubic if p = 3
and so on.

Superlinear convergence implies linear convergence. Therefore, we
can say that a sequence that converges superlinearly is faster than
a sequence that converges linearly. Moreover, quadratic convergence
implies superlinear convergence, cubic convergence implies quadratic
and so on.

There are also convergence rates that are inferior to linear. Some
of them are stated below.

Definition 8 Let limk→∞ x
k = x∗. Then the sequence {xk}k∈N con-

verges to x∗ sublinearly if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 1.

Definition 9 Let limk→∞ x
k = x∗. Then the sequence {xk}k∈N con-

verges to x∗ R-linearly if

‖xk+1 − x∗‖ ≤ ak,

where {ak}k∈N converges to zero Q-linearly.

4.1 Exercises

1. Define the approximation error as

ek := ‖xk − x∗‖.

Plot the error sequences {ek}k∈N of the sequences {xk}k∈N that
converge sublinearly, linearly, superlinearly and quadratically.
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2. Prove that {xk}k∈N converges to x∗ R-linearly if and only if there
exist B > 0 and ρ ∈ (0, 1) such that

‖xk − x∗‖ ≤ Bρk.

3. Prove that superlinear convergence implies linear convergence.

4. Prove that quadratic convergence implies superlinear conver-
gence.

5. Prove that superlinear convergence does not depend on the norm.

6. Does linear convergence in one norm imply linear convergence
in another norm? Explain.



Chapter 5

Line search methods

Let us consider an unconstrained optimization problem where the ob-
jective function f is continuously differentiable. Assume that we have
a point x which is not stationary for function f , i.e., ∇f(x) 6= 0. Ac-
cording to the analysis from Chapter 2, we conclude that x is not a
minimizer of f and there exists a point y in a vicinity of point x such
that f(y) < f(x). This implies that there is a vector d ∈ Rn such that
f(x + αd) < f(x) for some scalar α > 0. The main idea behind the
line search method lies in this fact. First, we find a suitable direction
d from point x. Then, we search along that line to find a suitable
length α. The direction d is usually called a search direction, while
the length α is called a step size.1 Having all this in mind, we define
a descent search direction as follows.

Definition 10 Consider a point x such ∇f(x) 6= 0. A direction d is
called descent direction for f at the point x if there exists α > 0 such

1Another framework which is widely used is the so called Trust region frame-
work where, within the current iteration, the step size constraint is given first,
while the direction is determined latter throughout solving a constrained subprob-
lem. For further introduction, see [16] for instance.
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that
f(x+ αd) < f(x).

If f is continuously differentiable, we can state a characterization
of descent directions which is frequently used.

Theorem 5.1 Suppose that f : Rn → R, f ∈ C 1 (Rn), and x ∈ Rn is
such that ∇f(x) 6= 0. Moreover, suppose that the direction d satisfies
the following inequality

∇Tf(x)d < 0. (5.1)

Then, there exists ᾱ such that f(x+ αd) < f(x) for all α ∈ (0, ᾱ].

Proof. Let us define φ(α) := f(x + αd). Then (5.1) implies that
φ′(0) < 0. On the other hand,

φ′(0) = lim
α→0+

φ(α)− φ(0)

α

and thus (φ(α) − φ(0))/α < 0 for all positive α small enough, i.e.,
there exists ᾱ such that f(x+ αd) < f(x) for all α ∈ (0, ᾱ].

Notice that the previous theorem states that d is a descent direction
for function f at point x if (5.1) holds. Therefore, (5.1) is often used
as the main indicator of the descent property.

Now, we state the model algorithm of the line search method.

Algorithm 5.1

Step 0 Input parameters: x0 ∈ Rn.

Step 1 Initialization: k = 0.

Step 2 Stopping criterion: If ∇f(xk) = 0 STOP. Otherwise go to
Step 3.
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Step 3 Search direction: Choose dk such that ∇Tf(xk)dk < 0.

Step 4 Step size: Find αk > 0 such that f(xk + αkd
k) < f(xk).

Step 5 Update: Set xk+1 = xk + αkd
k, k = k + 1 and go to Step 2.

Notice that the Algorithm 5.1 stops only if it encounters a sta-
tionary point of the function f . Otherwise it generates an infinite
sequence of iterates {xk}k∈N such that f(xk+1) < f(xk). However, in
general, this is not enough to claim that the sequence {xk}k∈N con-
verges to a minimizer of f. For example, consider f(x) = x2 and define
xk = 1 + 1/k. It is easy to see that x∗ = 0 is the only minimizer and
the only stationary point of the considered function. Also, there holds
f(xk+1) < f(xk) for every k, but {xk}k∈N tends to 1 which is not even
a stationary point (see Figure 5.1).

Moreover, the sequence of iterates does not have to be convergent.
For instance, consider f(x) = sin(x). If we define the sequence as
x2k+1 = 1/(2k+ 1), x2k = 2π+ 1/(2k) we obtain again that f(xk+1) <
f(xk) but obviously we have 2 accumulation points of that sequence:
0 and 2π (see Figure 5.2).

Even if the sequence is convergent, we have seen that it does not
have to converge to a solution. The reasons for that are different, some
of them are: too small steps (xk+1 − xk), too large steps or search
directions that are nearly orthogonal to the gradient (see Figure 5.3).
In the sequel we provide guidance for overcoming some of these issues.

To avoid steps that are too small, we impose the following condition
on the search direction

‖dk‖ ≥ σ‖∇f(xk)‖, (5.2)

where σ > 0. On the other hand, in order to provide sufficient decrease
and avoid situations with large but unproductive steps, we impose the
following condition on the step size

f(xk + αkd
k) ≤ f(xk) + ηαk∇Tf(xk)dk, (5.3)



36 Line search methods

-1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.1: Insuficient decrease - small steps.



37

-1 0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2k+1

x
2k

Figure 5.2: Insuficient decrease - large steps.



38 Line search methods

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x

y

x

∇ f(x)

d

x+ ∇ f(x)

Figure 5.3: Insuficient decrease - insuficiently descent direction.



39

where η ∈ (0, 1) and it is usually set to very small value, for example
10−4. Moreover, we assume that dk satisfies (5.1), so we obtain the de-
crease in the function value proportional to scalar product ∇Tf(xk)dk.
Condition (5.3) is often called the Armijo condition or sufficient de-
crease condition.

There are many different ways to find a step size that satisfies the
Armijo condition. As we will see latter, in some cases we can even find
an exact minimizer of f(xk + αdk), i.e., the step size αk which solves
the problem

min
α>0

f(xk + αdk). (5.4)

In that case we say that the exact line search is performed. However,
this does not happen very often since the subproblem (5.4) is not
easy to solve in general. Moreover, solving that subproblem exactly
is not necessary - an approximate solution which satisfies the Armijo
condition does not deteriorate the convergence properties.

One of the common approaches to perform the line search is to use
the so called backtracking: starting from α = 1, decrease α until the
Armijo condition is satisfied. Therefore, the Step 4 of Algorithm 5.1
is often stated as follows.

Step 4.1 Given β ∈ (0, 1), find the smallest nonnegative integer j
such that α = βj satisfies the Armijo condition (5.3).

If the Armijo condition is satisfied immediately, i.e., with α = 1, we
say that the full step is accepted. The full step is especially important
for Newton methods stated in the Chapter 7.

Now, the question is whether Step 4.1 is well defined, i.e., whether
it will be finished in a finite number of trials. The following theorem
provides the answer.
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Theorem 5.2 Suppose that f : Rn → R, f ∈ C 1 (Rn) and∇Tf(xk)dk <
0. Moreover, assume that the function f is bounded from bellow on
the line {xk + αdk | α > 0}. Then, there exists ᾱ > 0 such that the
Armijo condition holds for all α ∈ (0, ᾱ].

Proof. Define φ(α) := f(xk + αdk) and

l(α) := f(xk) + ηα∇Tf(xk)dk = φ(0) + αηφ′(0).

Notice that l(0) = φ(0) and l(α) is a linear function with the negative
slope ηφ′(0) so it is unbounded from below. Moreover, since η ∈ (0, 1),
there holds l′(0) > φ′(0). On the other hand, φ(α) is bounded from
below under the stated assumptions and there exists at least one point
of intersection of these two functions. Let ᾱ be the first intersection
point, i.e., the smallest α such that l(α) = φ(α). Then, putting all
together we conclude that φ(α) ≤ l(α) for all α ∈ (0, ᾱ] and thus the
Armijo condition is satisfied for all sufficiently small α > 0.

Finally, in order to avoid search directions that are nearly orthog-
onal to the gradient, we impose the following condition

∇Tf(xk)dk ≤ −θ‖∇f(xk)‖‖dk‖, (5.5)

where θ ∈ (0, 1]. In some sense, this condition implies that the di-
rection dk is sufficiently descent. Notice that the previous condition
implies that the

cos∠(dk,∇f(xk)) ≤ −θ.

In other words, the angle between dk and the negative gradient−∇f(xk)
is sufficiently sharp.

Now, let us specify further the previously stated algorithm and
prove the global convergence result.

Algorithm 5.2
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Step 0 Input parameters: x0 ∈ Rn, β, η ∈ (0, 1), θ ∈ (0, 1], σ >
0, k = 0.

Step 1 Stopping criterion: If ∇f(xk) = 0 STOP. Otherwise go to
Step 2.

Step 2 Search direction: Choose dk such that

‖dk‖ ≥ σ‖∇f(xk)‖ and ∇Tf(xk)dk ≤ −θ‖∇f(xk)‖‖dk‖.

Step 3 Step size: Find the smallest nonnegative integer j such that
αk = βj satisfies the Armijo condition

f(xk + αkd
k) ≤ f(xk) + ηαk∇Tf(xk)dk.

Step 4 Update: Set xk+1 = xk + αkd
k, k = k + 1 and go to Step 1.

Theorem 5.3 Suppose that f : Rn → R, f ∈ C 1 (Rn) and f is
bounded from bellow. Moreover, assume that the sequence of search
directions {dk}k∈N is bounded. Then, either the Algorithm 5.2 termi-
nates after finite number of iterations k̄ at the stationary point xk̄ or
every accumulation point of the sequence {xk}k∈N is stationary point
of the function f .

Proof. Algorithm 5.2 terminates only if the stationary point is
encountered as stated in Step 1. So, let us consider the case where
the number of iterations is infinite. Step 2 implies that for every k we
have

∇Tf(xk)dk ≤ −θ‖∇f(xk)‖‖dk‖ ≤ −θσ‖∇f(xk)‖2. (5.6)

Furthermore, Step 3 yields

f(xk+1) ≤ f(xk)− ηαkθσ‖∇f(xk)‖2.
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Notice that the Step 3 is well defined since the conditions of Theorem
5.2 are fulfilled. Moreover, applying (5.6) recursively and denoting
c = ηθσ we obtain

f(xk+1) ≤ f(x0)− c
k∑
i=1

αi‖∇f(xi)‖2.

Since the function f is assumed to be bounded from bellow, there
exists M such that f(x) ≥ M for every x and therefore the previous
inequality implies

c
k∑
i=1

αi‖∇f(xi)‖2 ≤ f(x0)−M.

Therefore,
∑∞

k=1 αk‖∇f(xk)‖2 <∞ and thus

lim
k→∞

αk‖∇f(xk)‖2 = 0. (5.7)

Now, let x∗ be an arbitrary accumulation point of the sequence {xk}k∈N,
i.e., there exists K ⊆ N such that

lim
k∈K

xk = x∗.

We will show that ∇f(x∗) = 0. If the sequence of step sizes {αk}k∈K is
bounded away from zero, then (5.7) implies that limk∈K ‖∇f(xk)‖2 =
0 and the continuity of ∇f implies that ‖∇f(x∗)‖ = 0. So, let us
consider the remaining case - assume that there exists K1 ⊆ K such
that limk∈K1 αk = 0. Without loss of generality we can assume that
αk < 1 for every k ∈ K1. This means that for every k ∈ K1 there
exists α′k such that αk = βα′k and

f(xk + α′kd
k) > f(xk) + ηα′k∇Tf(xk)dk. (5.8)
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Moreover, the Mean value theorem implies that for every k ∈ K1 there
exists tk ∈ (0, 1) such that

f(xk + α′kd
k)− f(xk) = ∇Tf(xk + tkα

′
kd

k)α′kd
k

and (5.8) yields

∇Tf(xk + tkα
′
kd

k)dk > η∇Tf(xk)dk

for every k ∈ K1. Recall that the sequence {dk}k∈N is assumed to be
bounded, so there exist K2 ⊆ K1 and d∗ such that limk∈K2 d

k = d∗.
Now, since limk∈K2 α

′
k = 0, taking the limit over K2 in the previous

inequality we get

∇Tf(x∗)d∗ ≥ η∇Tf(x∗)d∗.

Since η ∈ (0, 1) we conclude that

∇Tf(x∗)d∗ ≥ 0. (5.9)

On the other hand, for every k there holds ∇Tf(xk)dk ≤ 0. So, taking
the limit over K2 we obtain

∇Tf(x∗)d∗ ≤ 0. (5.10)

Combining (5.9) and (5.10) we obtain ∇Tf(x∗)d∗ = 0 which together
with (5.6) implies

0 = ∇Tf(x∗)d∗ = lim
k∈K2

∇Tf(xk)dk ≤ lim
k∈K2

−θσ‖∇f(xk)‖2 = −θσ‖∇f(x∗)‖2

and we conclude that ‖∇f(x∗)‖ = 0, i.e., x∗ must be a stationary
point of f .

Notice that the previous theorem can also be proved for the Algo-
rithm 5.2 which takes the following step instead of Step 2.

Step 2’ Search direction: Choose dk such that

∇Tf(xk)dk ≤ −m‖∇f(xk)‖2

for some m > 0.
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5.1 Exercises

1. Let

f(x) =
1

2
xTAx+ bx+ c,

where A ∈ Rn×n, AT = A, b ∈ Rn, c ∈ R and let x∗ be a local
minimizer of f . Prove that x∗ is also a global minimizer.

2. If d is a direction such that ∇Tf(x)d = 0, then d can be descent,
ascent or neither of these two. Demonstrate this statement.

3. Reformulate the system of nonlinear equations

F (x) = 0, F : Rn → Rm

into an unconstrained optimization problem.

4. Let

f(x) =
1

2
‖F (x)‖2, F : Rn → Rn, F ∈ C 1 (Rn).

Suppose that the Jacobian ∇F (x) is nonsingular for all x and
consider an iterative procedure

xk+1 = xk − αk(∇F (xk))−1F (xk).

Prove that the Armijo rule with the parameter η = 0.5 yields

f(xk+1) ≤ (1− αk)f(xk).

5. Let f : R → R, f ∈ C 2 (R), f ′(0) < 0 and f ′′(x) < 0 for every
x ∈ R. Let ν ∈ (0, 1). Prove that the following inequality holds
for every x ≥ 0

f(x) ≤ f(0) + νxf ′(0).
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6. Let q : Rn → R be a convex quadratic function. Assume that
we use the exact line search along the descent direction dk, i.e.,

αk = arg min
α>0

q(xk + αdk).

Show that the step size is given by

αk =
−∇T q(xk)dk

(dk)T∇2q(xk)dk
.

7. If f : Rn → R is a quadratic function, then φ(α) = f(x+ αd) is
parabolic function. Show that the minimizer of φ(α) is feasible
for the Armijo condition if η ∈ (0, 0.5).

8. Let f : Rn → R and suppose α > 0 satisfies the Armijo con-
dition. Does an arbitrary µ ∈ (0, α) also satisfy the Armijo
condition? Prove or provide an counterexample.

9. Suppose that f : Rn → R, f ∈ C 2 (Rn), ∇f (x̃ ) = 0 and
∇2f(x̃) is not positive semidefinite. Prove that then exists a
descent direction d at the point x̃.

10. Let xk be an iterate obtained in optimization process of minimiz-
ing function f : Rn → R, f ∈ C 1 (Rn). Also suppose that xk is
obtained by means of line search with the search direction dk−1.
Find a direction dk such that it is orthogonal to dk−1, descent
from xk and represented as a linear combination of ∇f(xk) and
dk−1.

11. Let f : Rn → R, ∇f(x̃) 6= 0 and let B ∈ Rn×n be a positive
definite matrix. Prove that

d = −B∇f(x̃)

is a descent direction at the point x̃.
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Gradient methods

In this section, we consider a special class of search directions

dk = −∇f(xk). (6.1)

Obviously, this direction is a descent direction for function f at point
xk. It is called the steepest descent direction because it minimizes
the cosine of the angle between the gradient and the search direction,

i.e. it minimizes ∇T f(xk)dk

‖∇T f(xk)‖‖dk‖ . It is often called simply the negative
gradient direction.

The steepest descent direction satisfies inequality (5.2) with σ =
1. It also satisfies inequality (5.5) with θ = 1. Therefore, in the
framework of line search methods, the global convergence result follows
directly from Theorem 5.3. However, as we already mentioned, the
convergence rate is also an important issue.

Let us start with the strongly convex quadratic objective function

f(x) =
1

2
xTAx+ bTx+ c,

where f : Rn → R, b ∈ Rn, c ∈ R and A ∈ Rn×n is symmetric
and positive definite. Therefore, there is an unique minimizer x∗.
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Moreover, the exact line search along the negative gradient direction
produces the step size in the closed form

αk =
∇Tf(xk)∇f(xk)

∇Tf(xk)A∇f(xk)
. (6.2)

Now, denoting the smallest and the largest eigenvalue of A by m and
M respectively, we state the following result.

Theorem 6.1 Let f be a strongly convex quadratic function and {xk}
be generated by the steepest descent method with the exact line search.
Then

f(xk+1)− f(x∗) ≤
(
M −m
M +m

)2

(f(xk)− f(x∗)).

Notice that the previous result states that the convergence is linear
with respect functional values f(xk)− f(x∗) and the following holds

lim
k→∞

f(xk) = f(x∗).

However, this does not imply the standard Q-linear convergence in
general. Furthermore, since the solution is unique, the previous result
implies that

lim
k→∞

xk = x∗.

In general, that is, if the objective function is not necessarily quadratic,
we have the following result.

Theorem 6.2 Suppose that f ∈ C 2 (R) and that the steepest descent
sequence with the exact line search converges to a point x∗ such that
∇2f(x∗) is positive definite. Then

f(xk+1)− f(x∗) ≤
(
M −m
M +m

)2

(f(xk)− f(x∗)),

where m and M are the smallest and the largest eigenvalue of ∇2f(x∗),
respectively.
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6.1 Fixed step size

We have already discussed that the exact line search can be very costly
in general. This is one of the reasons for introducing fixed step sizes
into the negative gradient method, i.e., consider the method which
takes fixed α as the step size and the negative gradient as the direction

xk+1 = xk − α∇f(xk). (6.3)

Assume that the objective function is twice continuously differentiable
and its gradient is Lipschitz continuous, i.e., the following holds for all
x, y ∈ Rn

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (6.4)

Notice that, under the assumption that f ∈ C 2 (Rn), the condition
(6.4) actually means that the maximal eigenvalues of the Hessian ma-
trix are uniformly bounden from above by L. So, we can prove the
convergence result for convex functions. The convergence is ensured
only if the step size α is small enough. Moreover, the result stated
bellow indicates that the convergence rate is only R-sublinear in terms
of f(xk).

Theorem 6.3 Suppose that f ∈ C 2 (Rn) is convex and that (6.4)
holds. Then, if α < 1/L, the fixed step size negative gradient method
defined with (6.3) satisfies

f(xk)− f(x∗) ≤ ‖x
0 − x∗‖2

2αk
.

Proof. Applying the Taylor expansion and using the fact that
‖∇2f(x)‖ ≤ L for every x due to (6.4), we obtain the following in-
equality for α < 1/L

f(xk+1) ≤ f(xk)−α‖∇f(xk)‖2+
L

2
α2‖∇f(xk)‖2 ≤ f(xk)−α

2
‖∇f(xk)‖2

(6.5)
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Now, the convexity of the function f implies

f(x∗) ≥ f(xk) +∇Tf(xk)(x∗ − xk),

i.e.,

f(xk) ≤ f(x∗) +∇Tf(xk)(xk − x∗). (6.6)

Combining (6.6) and (6.5) we obtain

f(xk+1) ≤ f(x∗) +∇Tf(xk)(xk − x∗)− α

2
‖∇f(xk)‖2,

that is,

f(xk+1)− f(x∗) ≤ ∇Tf(xk)(xk − x∗)− α

2
‖∇f(xk)‖2. (6.7)

Next, we arrange the right hand side of the previous inequality as
follows

‖xk − x∗‖2 − ‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk − x∗ − α∇f(xk)‖2

= ‖xk − x∗‖2 − (‖xk − x∗‖2 +

+ α2‖∇f(xk)‖2 − 2α(xk − x∗)T∇f(xk))

= 2α
(
∇Tf(xk)(xk − x∗)− α

2
‖∇f(xk)‖2

)
.

Therefore,

∇Tf(xk)(xk − x∗)− α

2
‖∇f(xk)‖2 =

1

2α
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2).

(6.8)
Combining the last equality with (6.7) we obtain

f(xk+1)− f(x∗) ≤ 1

2α
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2). (6.9)



6.1 Fixed step size 51

Since the previous inequality holds for every k = 0, 1, ..., summing up
we get

s∑
k=0

f(xk+1)− f(x∗) ≤ 1

2α

s∑
k=0

(‖xk − x∗‖2 − ‖xk+1 − x∗‖2)

=
1

2α
(‖x0 − x∗‖2 − ‖xs+1 − x∗‖2)

≤ 1

2α
‖x0 − x∗‖2.

Now, letting s tend to infinity and using the fact that f(xk+1)−f(x∗) ≥
0 for every k, we conclude that

lim
k→∞

f(xk+1) = f(x∗).

Moreover, from (6.5) there follows that f(xs+1) ≤ f(xs) for every s
and thus

f(xs+1) ≤ f(xk), k = 0, 1, ..., s+ 1.

Finally,

f(xs+1)− f(x∗) =
1

s+ 1

s∑
k=0

(f(xs+1)− f(x∗))

≤ 1

s+ 1

s∑
k=0

(f(xk+1)− f(x∗))

≤ 1

s+ 1

(
1

2α
‖x0 − x∗‖2

)
,

where the last inequality follows from (6.10).
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6.2 Exercises

1. Suppose that d1, ..., dn are linearly independent vectors from Rn

and f : Rn → R, f ∈ C 1 (Rn). Also, suppose that

min
λ∈R

f(x̃+ λdj) = f(x̃), j = 1, ..., n.

Prove that ∇f(x̃) = 0. Does this imply that x̃ is a local mini-
mizer of function f?

2. Let

f(x) =
1

2
xTAx+ bTx+ c,

where f : Rn → R, b ∈ Rn, c ∈ R and A ∈ Rn×n is symmetric
and positive definite. Let L1 and L2 be two different parallel
lines in Rn with direction d. Let x1 and x2 be minimizers of f
on L1 and L2, respectively. Prove that (x2 − x1)TAd = 0.

3. Let f : Rn → R, f ∈ C 1 (Rn). Define an iterative procedure by

xk+1 = xk − λk∇f(xk),

where λk ≥ λ > 0 for every k ∈ N0. Suppose that limk→∞ x
k =

x̃. Prove that ∇f(x̃) = 0.

4. Suppose that we have the negative gradient method with the
exact line search. Prove that any two consecutive gradients are
mutually orthogonal.

5. Suppose that f : Rn → R, f ∈ C 1 (Rn). Let y be the point
obtained by applying the negative gradient method and the exact
line search from a point x. Let z be the point obtained by
applying the negative gradient method and the exact line search
from the point y. Prove that z − x is a descent direction at the
point x.
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6. Sketch the level curves of function

f(x) = x2
1 + 4x2

2 − 4x1 − 8x2.

Find x̃ that minimizes f . The steepest descent method with the
exact line search cannot converge to a point x̃ in finitely many
steps if x0 = 0. Is there any x0 such that the method converges
to x̃ in finitely many steps?

7. Consider the negative gradient method for minimizing the strongly
convex quadratic function q. Let x̃ be a solution and suppose
that

x0 = x̃+ µv

where v is the eigenvector of ∇2q(x) corresponding to the eigen-
value λ and µ ∈ R. Prove that

∇q(x0) = µλv.

If the exact line search is used from x0, the method converges in
one step. Show that the negative gradient method with the exact
line search converges in one iteration for every x0 if ∇2q(x) = αI
where α > 0 and I is the identity matrix.

8. Suppose that f is quadratic and strongly convex. Prove that
if the negative gradient method is applied, starting with a well
chosen x0, such that ∇f(x0) 6= 0, and finds a minimum in one
iteration, then d = x1 − x0 is an eigenvector of ∇f .

9. For which special class of strongly convex quadratic functions
the negative gradient method with the exact line search finds a
solution in only one step?

10. For which special class of strongly convex quadratic functions
Theorem 6.1 implies the standard Q-linear convergence?



Chapter 7

Newton-like methods

The gradient type methods are widely applicable and relatively easy
to implement. However, their rate of convergence is at most linear
in general. Therefore, methods that can achieve faster rate of conver-
gence are developed. These methods usually require some information
about the Hessian of the objective function. Since the Hessian is the
second order derivative, these methods are often called the second
order methods.

The most important second order method is the Newton method
which assumes that the true Hessian is available at each iteration.
Sometimes, the Hessian is unavailable or very hard (costly) to eval-
uate and the second order derivative is approximated yielding the so
called quasi-Newton methods. Moreover, even if the true Hessian is
available, obtaining the Newton direction assumes solving a system of
linear equations. If the dimension of the problem is large, then this
system is large too and it is hard (or costly) to solve it exactly at each
iteration. When the considered system is solved only approximately,
we are talking about Inexact Newton methods.

There are a lot of modifications of the Newton method. We focus
here only on the basic concepts.
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7.1 The Newton method

Suppose that we are at an iteration xk such that ∇f(xk) 6= 0. Ideally,
we would like to find a solution in the next step so we would like to
obtain xk+1 such that ∇f(xk+1) = 0. Denote dk = xk+1 − xk. Then,
using the Taylor expansion we get the following approximation

∇f(xk+1) ≈ ∇f(xk) +∇2f(xk)dk.

So, instead of searching for xk+1 such that the left hand side is equal
to zero, we search for dk such that the right hand side is equal to zero.
This way we obtain the famous Newton’s equation

∇f(xk) +∇2f(xk)dk = 0. (7.1)

The vector dk that satisfies (7.1)is called the Newton step or the New-
ton direction. Notice that this step is a solution of the system of linear
equations

∇2f(xk)dk = −∇f(xk).

This step is not unique in general, but if the Hessian matrix ∇2f(xk)
is non-singular, then we can express the Newton step by

dk = −(∇2f(xk))−1∇f(xk). (7.2)

To see the power of the Newton method, let us start with the quadratic
objective function.

Theorem 7.1 Suppose that the function f is quadratic and strongly
convex. Then, the Newton method applied from an arbitrary x0 pro-
vides a global minimizer of function f in one iteration.

Proof. Let us consider an arbitrary starting point x0 and

f(x) =
1

2
xTAx+ bTx+ c.
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The objective function is assumed to be strongly convex and thus the
Hessian matrix A is positive definite and the Newton direction can be
stated as

d0 = −A−1(Ax0 + b) = −x0 − A−1b.

Now, the next iterate is x1 = x0 + d0 = −A−1b and

∇f(x1) = Ax1 + b = A(−A−1b) + b = 0.

Therefore, the point x1 is stationary for function f and since the ob-
jective function is strongly convex we conclude that x1 is a global
minimizer.

Now, let us consider a general case. Notice that the Newton direc-
tion does not have to be a descent direction even if the Hessian matrix
is non-singular. However, it is a descent direction if the Hessian is pos-
itive definite. In that case the inverse Hessian is also positive definite
and there holds

∇Tf(xk)dk = −∇Tf(xk)(∇2f(xk))−1∇f(xk),

which is negative unless xk is a stationary point. Assume further that
the Hessian is uniformly bounded. Then there exists M > 0 such
that the maximal eigenvalue of each Hessian is bounded form above,
i.e., λmax(∇2f(x)) ≤ M for every x. This furthermore implies that
the eigenvalues of the inverse Hessian matrices are uniformly bounded
away from zero, i.e.,

λmin(∇2f(x))−1) ≥ 1

M
:= m

for every x. Therefore,

∇Tf(xk)dk = −∇Tf(xk)(∇2f(xk))−1∇f(xk) ≤ −m‖∇f(xk)‖2.
(7.3)
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Using this inequality we can prove the global convergence for the line
search Newton method. Indeed, let us consider the following algorithm
which differers from Algorithm 5.2 only in Step 2.

Algorithm 7.1

Step 0 Input parameters: x0 ∈ Rn, β, η ∈ (0, 1), k = 0.

Step 1 Stopping criterion: If ∇f(xk) = 0 STOP.

Step 2 Search direction: Compute the Newton direction dk such that

∇2f(xk)dk = −∇f(xk).

Step 3 Step size: Find the smallest nonnegative integer j such that
αk = βj satisfies the Armijo condition

f(xk + αkd
k) ≤ f(xk) + ηαk∇Tf(xk)dk.

Step 4 Update: Set xk+1 = xk + αkd
k, k = k + 1 and go to Step 1.

Following the same steps as in the proof of Theorem 5.3 we can
prove the global convergence stated in the following theorem.

Theorem 7.2 Suppose that f : Rn → R, f ∈ C 2 (Rn) and f is
bounded from bellow. Moreover, assume that the Hessian matrices
are uniformly bounded and positive definite and that the sequence of
search directions {dk}k∈N is bounded. Then, either the Algorithm 7.1
terminates after a finite number of iterations k̄ at the stationary point
xk̄ or every accumulation point of the sequence {xk}k∈N is a stationary
point of the function f .

Although the global convergence can be achieved under the stated
conditions, Newton method is famous for the local convergence result
that we state below. The key property of the Newton method is its
quadratic local convergence.
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Theorem 7.3 Suppose that the function f ∈ C 2 (Rn) and there exists
δ > 0 such that ∇2f(x) � 0 and ∇2f(x) is Lipschitz continuous with
the constant L for all x ∈ B(x ∗, δ). Then there exists ε > 0 such that
the Newton method converges quadratically to the solution x∗ for all
x0 ∈ B(x ∗, ε). Moreover, the sequence of the gradient norms converges
quadratically to zero.

Proof. Since ∇2f(x) � 0 for all x ∈ B(x ∗, δ) and there holds1

‖(∇2f(x))−1‖ ≤ 2‖(∇2f(x∗))−1‖ := 2γ.

Now, let us take an arbitrary τ ∈ (0, 1) and define

ε = min{ τ
γL

, δ},

Assume that x0 ∈ B(x ∗, ε). Then, using the Mean value theorem and
the fact that ∇f(x∗) = 0 we obtain

‖x1 − x∗‖ = ‖x0 − (∇2f(x0))−1∇f(x0)− x∗‖
= ‖(∇2f(x0))−1(∇2f(x0)(x0 − x∗)− (∇f(x0)−∇f(x∗)))‖

≤ ‖(∇2f(x0))−1‖
∥∥∥∥∫ 1

0

(
∇2f(x0)(x0 − x∗)−∇2f(x0 + t(x0 − x∗))(x0 − x∗)

)
dt

∥∥∥∥
≤ 2γ

∫ 1

0

‖∇2f(x0)−∇2f(x0 + t(x0 − x∗))‖‖x0 − x∗‖dt

≤ 2γ

∫ 1

0

Lt‖x0 − x∗‖2dt

= γL‖x0 − x∗‖2

Furthermore,

‖x1−x∗‖ ≤ γL‖x0−x∗‖‖x0−x∗‖ ≤ γLε‖x0−x∗‖ ≤ τ‖x0−x∗‖ < ‖x0−x∗‖
1See Theorem 7.6.
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and using the induction arguments we obtain that

‖xk+1 − x∗‖ ≤ τ‖xk − x∗‖, k = 0, 1, ... (7.4)

and
‖xk+1 − x∗‖ ≤ γL‖xk − x∗‖2, k = 0, 1, .... (7.5)

Since τ ∈ (0, 1), the inequality (7.4) implies that limk→∞ x
k = x∗ and

the inequality (7.5) implies that the convergence is quadratic.
Now, using the similar arguments we prove the quadratic conver-

gence of the gradient norms. Indeed,

‖∇f(xk+1)‖ = ‖∇f(xk+1)− (∇f(xk) +∇2f(xk)dk)‖

= ‖
∫ 1

0

∇2f(xk + tdk)dkdt−
∫ 1

0

∇2f(xk)dkdt‖

≤
∫ 1

0

Lt‖dk‖2dt =
L

2
‖dk‖2

=
L

2
‖ − (∇2f(xk))−1∇f(xk)‖2

≤ L

2
‖(∇2f(xk))−1‖2‖∇f(xk)‖2

≤ L

2
(2γ)2‖∇f(xk)‖2 = 2γ2L‖∇f(xk)‖2.

This completes the proof.

The next statement claims that the line search method combines
well with the local Newton method, i.e., that the step size eventually
becomes equal to 1 and thus the full step is taken if the objective
function is strongly convex. Therefore the local quadratic convergence
is preserved under the line search.

Theorem 7.4 Suppose that the conditions of Theorem 7.3 hold and
that the function f is strongly convex. Let {xk} be a sequence generated
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by Algorithm 7.1. Then there exists η ∈ (0, 1) small enough and k̄ ∈ N
such that αk = 1 for all k ≥ k̄.

Proof. Let xk be generated by Algorithm 7.1. Theorem 7.3 implies
that limk→∞ x

k = x∗. Given that f is strongly convex, there is µ > 0
such that ∇2f(xk) � µI and thus (∇2f(xk))−1 � (µ)−1I for k large
enough. The Taylor expansion yields

f(xk + dk) = f(xk) +∇f(xk)Tdk +
1

2
(dk)T∇2f(θk)dk,

for some θk ∈ B(xk, ‖dk‖). Therefore,

f(xk + dk) = f(xk) +∇Tf(xk)dk +
1

2
(dk)T∇2f(xk)dk

+
1

2
(dk)T

(
∇2f(θk)−∇2f(xk)

)
dk (7.6)

and

‖dk‖ =
∥∥(∇2f(xk))−1∇f(xk)

∥∥ ≤ 1

µ
‖∇f(xk)‖. (7.7)

The definition of dk yields

− (dk)T∇f(xk) = (dk)T∇2f(xk)dk ≥ µ‖dk‖2 (7.8)

and hence

‖dk‖2 ≤ − 1

µ
(dk)T∇f(xk). (7.9)

Take ε > 0 such that 1 − ε/µ ∈ (0, 1). Given that xk → x∗ and
∇f(x∗) = 0, we have ‖dk‖ → 0 and ‖∇2f(θk)−∇2f(xk)‖ ≤ ε for all
k large enough. So, (7.6) - (7.9) imply

f(xk + dk) ≤ f(xk) +
1

2
(1− ε/µ)(dk)T∇f(xk)

and the full step is accepted for η ≤ 1
2
(1− ε/µ).
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7.2 Quasi-Newton methods

The Newton method requires evaluation of the second order deriva-
tives at every iteration which can be very costly. In order to avoid
these costs, quasi-Newton methods are developed. The main idea is
to construct a matrix that approximates the Hessian or the inverse
Hessian by updating the previous approximation and using the first
order (gradient) information. In general, quasi-Newton methods can
achieve only the superlinear rate of convergence, but the cost of ob-
taining the search direction is significantly smaller then in the Newton
method.

Let us denote by Bk the approximation of the Hessian matrix
∇2f(xk). Then, quasi-Newton direction dk satisfies

Bkd
k = −∇f(xk). (7.10)

Assume that we have an approximation Bk and that we performed
the iteration to obtain xk+1. Then we need to update the Hessian
approximation Bk+1. One requirement is that Bk+1 satisfies the secant
equation

Bk+1s
k = yk, (7.11)

where sk = xk+1 − xk and

yk = ∇f(xk+1)−∇f(xk).

The motivation for the secant equation comes from the mean value
property

yk =

∫ 1

0

∇2f(xk + tsk)skdt.

Thus Bk+1 aims to approximate the right-hand side of the previous
equality, i.e.,

Bk+1s
k ≈

∫ 1

0

∇2f(xk + tsk)skdt.
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The secant equation does not determine an unique Bk+1. Therefore,
besides the symmetry which is a natural requirement for Hessian ap-
proximation, other conditions are imposed. The least-change update
condition is the most successful one and it states that the next approx-
imation matrix should be as close as possible to the current approx-
imation. Therefore Bk+1 is a solution of the following optimization
problem

min ‖B −Bk‖ subject to BT = B, Bsk = yk. (7.12)

Clearly, the solution of the above problem depends on the norm we use
in the objective function. Two update formulas are the most famous,
BFGS and DFP. The BFGS (Broyden-Fletcher-Goldfarb-Shanno) for-
mula is given as

Bk+1 = Bk +
yk(yk)T

(yk)T sk
− Bks

k(sk)TBk

(sk)TBksk
(7.13)

The update (7.13) is well defined if the curvature condition (yk)T sk > 0
holds. It can be shown that this condition is satisfied if the objective
function is strongly convex. Moreover, if Bk is positive definite, cur-
vature condition also implies that Bk+1 is positive definite as well.
Otherwise, if the curvature condition does not hold, a safeguarding is
necessary and the common strategy is to skip the update, i.e., to take
Bk+1 = Bk.

The DFP (Davidon-Fletcher-Powell) formula is given by

Bk+1 =

(
I − 1

(yk)T sk
yk(sk)T

)
Bk

(
I − yk(sk)T

(yk)T sk

)
+
yk(yk)T

(yk)T sk
(7.14)

and it has similar properties as BFGS although BFGS is more popular
and efficient in general.

Since the search direction is obtained from the quasi Newton lin-
ear system, Bkd

k = −∇f(xk), one might be interested in an inverse
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Hessian approximation, Hk ≈ (∇2f(xk))−1. The Sherman-Morrison-
Woodbury formula2 provides the updating formula that correspond to
the DFP update

Hk+1 = Hk −
Hky

k(yk)THk

(yk)THkyk
+
sk(sk)T

(yk)T sk
. (7.15)

Since this is an approximation of the inverse Hessian, i.e. Hk = B−1
k ,

the secant equation becomes

Hk+1y
k = sk. (7.16)

Analogously, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula
yields

Hk+1 =

(
I − sk(yk)T

(yk)T sk

)
Hk

(
I − yk(sk)T

(yk)T sk

)
+
sk(sk)T

(yk)T sk
. (7.17)

The most simple approximation of the inverse Hessian is clearly a
scalar matrix,

Hk = γkI, γk ∈ R (7.18)

Let us consider the secant equation (7.16) and solve it for γk,

γk = arg min
γ>0
‖γyk−1 − sk−1‖.

This problem can be solved analytically and the solution is given by

γk =
(sk−1)Tyk−1

‖yk−1‖2
. (7.19)

Clearly, the coefficient γk contains the minimal second order informa-
tion and the corresponding quasi Newton equation yields the so called
spectral gradient direction

dk = −γk∇f(xk). (7.20)

2see Exercise 12
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Notice that if the curvature condition (sk−1)Tyk−1 > 0 does not hold,
then γk can be negative and the search direction is not necessary de-
scent. Thus the safeguard

γ̄k = min{γmax,max{γk, γmin}}
is needed with arbitrary values γmin < γmax and in practice it is com-
mon to take 0 < γmin << 1 << γmax < ∞. Perhaps surprisingly
this simple modification of the gradient methods is very efficient in
practice.

We conclude this section by providing the general superlinear con-
vergence result for Quasi-Newton methods without specifying the method.

Theorem 7.5 Suppose that f ∈ C 2 (Rn). Let {xk} be a sequence
generated by a quasi Newton method (7.10) and assume that {xk}k∈N
converges to a point x∗ such that ∇f(x∗) = 0 and ∇2f(x∗) � 0. Then
{xk}k∈N converges superlinearly if

lim
k→∞

‖(Bk −∇2f(x∗))dk‖
‖dk‖

= 0. (7.21)

Proof. Let us start with difference between the Newton direction
dkN and quasi-Newton direction dk. Since f ∈ C 2 (Rn), ∇2f(x∗) � 0
and limk→∞ x

k = x∗ we know that ∇2f(xk) � 0 for all k large enough.
Therefore,

dk − dkN = (∇2f(xk))−1(∇2f(xk)dk +∇f(xk))

= (∇2f(xk))−1(∇2f(xk)dk −Bkd
k)

= (∇2f(xk))−1((∇2f(xk)−∇2f(x∗))dk + (∇2f(x∗)−Bk)d
k)

Now, since ‖(∇2f(xk))−1‖ ≤ C1 for some C1 > 0 and all k large
enough, there holds

‖dk − dkN‖
‖dk‖

≤ C1

(
‖∇2f(xk)−∇2f(x∗)‖‖dk‖

‖dk‖
+
‖(∇2f(x∗)−Bk)d

k‖
‖dk‖

)
.

(7.22)
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Taking the limit and using the continuity of the Hessian and (7.21)
we obtain that

‖dk − dkN‖ = o(‖dk‖). (7.23)

Notice that under the stated conditions, Theorem 7.3 implies that
the Newton method converges quadratically. Therefore, there exists a
constant C2 such that for k large enough we obtain the following

‖xk+1 − x∗‖ = ‖xk + dk − x∗‖
= ‖xk + dk − x∗ + dkN − dkN‖
≤ ‖xk + dkN − x∗‖+ ‖dk − dkN‖
≤ C2‖xk − x∗‖2 + ‖dk − dkN‖,

so
‖xk+1 − x∗‖
‖xk − x∗‖

≤ C2‖xk − x∗‖+
‖dk − dkN‖
‖xk − x∗‖

. (7.24)

Notice that

‖dk‖ = ‖xk+1 − xk‖ ≤ ‖xk+1 − x∗‖+ ‖x∗ − xk‖.

Since xk tends to x∗ there must exist C3 > 0 such that ‖xk+1− xk‖ ≤
C3‖xk − x∗‖ and thus

‖dk‖ ≤ (1 + C3)‖xk − x∗‖.

Furthermore, we obtain

‖dk − dkN‖
‖xk − x∗‖

≤ (1 + C3)
‖dk − dkN‖
‖dk‖

(7.25)

and thus (7.23) implies that

lim
k→∞

‖dk − dkN‖
‖xk − x∗‖

= 0.

Finally, taking the limit in (7.24) we obtain the result.
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7.3 Inexact Newton methods

In this section we consider the search direction which is an approxi-
mation of the Newton direction in a sense that it solves the Newton
equation (7.1) inexactly. The error is usually gradient-related so the
inexact Newton direction dk satisfies

‖∇2f(xk)dk +∇f(xk)‖ ≤ ηk‖∇f(xk)‖, (7.26)

where ηk ≥ 0. Notice that the choice ηk = 0 provides the Newton
direction. Moreover, as we will see in the sequel, the choice of ηk
controls the rate of convergence. In order to prove the main result, we
need the following result.

Theorem 7.6 Suppose that f ∈ C 2 (Rn) and that the Hessian is Lip-
schitz continuous on the neighborhood of x∗ such that ∇f(x∗) = 0 and
∇2f(x∗) � 0. Then there exists ε > 0 such that for all x ∈ B(x ∗, ε)
the Hessian is positive definite and the following holds:

a)
‖∇2f(x)‖ ≤ 2‖∇2f(x∗)‖.

b)
‖(∇2f(x))−1‖ ≤ 2‖(∇2f(x∗))−1‖.

c)
‖x− x∗‖

2‖(∇2f(x∗))−1‖
≤ ‖∇f(x)‖ ≤ 2‖∇2f(x∗)‖‖x− x∗‖.

Theorem 7.7 Suppose that f ∈ C 2 (Rn) and that the Hessian is Lip-
schitz continuous on the neighborhood of x∗ such that ∇f(x∗) = 0 and
∇2f(x∗) > 0. Then there exist C, δ > 0 such that for all xk ∈ B(x ∗, δ)
the inexact Newton iteration satisfies

‖xk+1 − x∗‖ ≤ C(‖xk − x∗‖+ ηk)‖xk − x∗‖.
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Proof. Notice that under the stated conditions Theorem 7.3 implies
the existence of C1 > 0 and ε > 0 such that if xk ∈ B(x ∗, ε) there
holds

‖xk + dkN − x∗‖ = ‖xk − (∇2f(xk))−1∇f(xk)− x∗‖ ≤ C1‖xk − x∗‖2.
(7.27)

Now, let us define δ = min{ε, ε} where ε is such that the results of
Theorem 7.6 hold on B(x ∗, ε). Suppose that xk ∈ B(x ∗, δ). Now, let
us denote by rk the residual of the Newton’s equation, i.e.,

rk := ∇2f(xk)dk +∇f(xk),

so there holds ‖rk‖ ≤ ηk‖∇f(xk)‖. Obviously,

dk = (∇2f(xk))−1rk − (∇2f(xk))−1∇f(xk)

and we obtain

‖xk+1 − x∗‖ = ‖xk + (∇2f(xk))−1rk − (∇2f(xk))−1∇f(xk)− x∗‖
≤ C1‖xk − x∗‖2 + ‖(∇2f(xk))−1‖‖rk‖
≤ C1‖xk − x∗‖2 + 2‖(∇2f(x∗))−1‖ηk‖∇f(xk)‖
≤ C1‖xk − x∗‖2 + 2‖(∇2f(x∗))−1‖ηk2‖∇2f(x∗)‖‖xk − x∗‖
≤ C(‖xk − x∗‖+ ηk)‖xk − x∗‖,

where C = max{C1, 4‖(∇2f(x∗))−1‖‖∇2f(x∗)‖}.

Finally, we state the convergence rate result.

Theorem 7.8 Suppose that f ∈ C 2 (Rn) and that the Hessian is Lip-
schitz continuous on the neighborhood of x∗ such that ∇f(x∗) = 0 and
∇2f(x∗) � 0. Then there exist δ > 0 and η̄ > 0 such that the full
Inexact Newton method converges linearly to x∗ if x0 ∈ B(x ∗, δ) and
{ηk}k∈N ⊆ [0, η̄]. Moreover, if limk→∞ ηk = 0, the convergence rate is
superlinear and if ηk ≤ C‖∇f(xk)‖p for some C > 0 and p ∈ (0, 1],
then the convergence rate is of order 1 + p.
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7.4 Exercises

1. Consider a function f(x, y) = 0.5(x2 − y2). Show that the New-
ton direction is an ascent direction from point z = (0, 1)T . Is the
negative Newton direction a descent direction from that point?

2. Consider a function f(x, y) = x4 + xy + (1 + y)2. Show that
neither Newton nor negative Newton direction are descent in a
sense that ∇Tf(z)d < 0 if we consider the point z = (0, 0)T .

3. Prove Theorem 7.2.

4. Let f(x) = 0.5(x2
1−x2)2+0.5(1−x1)2. Solve minx∈R2 f(x) analyt-

ically. Perform one Newton step from x0 = (−1, 1.2)T . Calculate
f(x0) and f(x1) to find out if this is a good step.

5. Consider Newton method applied to minimize the function f(x) =
sin(x), f : R → R with x0 ∈ [−π, π]. A local minimizer is
x̃ = −π/2. Suppose that ε > 0 is sufficiently small. If x0 = −ε,
show that x1 ≈ −1/ε. What happens if x0 = ε but f ′′(x0) is
replaced with a small positive number?

6. Prove Theorem 7.6.

7. Newton method can converge to a local maximizer. To verify
this, apply Newton method to minimize function f : R→ R,

f(x) = −x4/4 + x3/3 + x2,

with x0 = 1. What happens to Newton method if we minimize
f(x) = x3/3 + x?

8. Let f(x) =
∑n

i=1(aix
2
i + bixi) where ai, bi ∈ R for i = 1, ..., n.

Find conditions under which the Newton direction is well defined
and descent.
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9. Show that γk given by (7.19) is the solution of the problem

min
γ∈R
‖γyk−1 − sk−1‖2.

10. Find the spectral gradient direction if the other form of the se-
cant equation (7.11) is considered.

11. Prove Theorem 7.8.

12. Assume that A,C, U, V are matrices of the corresponding dimen-
sions and that A is nonsingular matrix. The Sherman- Morrison-
Woodbury formula states that

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1,

assuming that C−1 + V A−1U is nonsingular. Using this for-
mula prove (7.15) and derive the corresponding expression for
the BFGS update.



Chapter 8

Least squares problems

One of the important special classes of unconstrained optimization
problems are the least squares problems which are written in the form

min
x∈Rn

1

2

m∑
j=1

(rj(x))2, (8.1)

where rj : Rn → R, j = 1, ...,m are usually assumed to be smooth
functions. Functions rj are often referred to as residuals. One typical
example of the least squares problem comes from data fitting and in
that case the residual is actually the error produced by employing
the model function. For example, if linear regression is considered
then the model function Φ(x; t) = xT t approximates the real values of
the outcome y according to the measurements t and x represents the
unknown vector of the relevant coefficients. More precisely, assuming
that there are m measurements, one can define the error as rj(x) =
Φ(x; tj)− yj and, minimization of the cumulative squared error yields
(8.1).

Let us denote by r the following function from Rn to Rm

r(x) = (r1(x), ..., rm(x))T .
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Furthermore, denote the Jacobian of this function by J , i.e.,

J(x) := ∇r(x).

Now, the problem (8.1) can be stated equivalently as

min
x∈Rn

f(x) =
1

2
‖r(x)‖2

and the derivatives of the objective function are

∇f(x) = JT (x)r(x) =
m∑
j=1

rj(x)∇rj(x), (8.2)

∇2f(x) =
m∑
j=1

∇rj(x)∇T rj(x) +
m∑
j=1

rj(x)∇2rj(x) := G(x) +H(x).

(8.3)
Notice that G(x) = JT (x)J(x).

First, we consider the linear least squares problem where each resid-
ual is a linear function. One of the examples of the linear least squares
problem is the linear regression problem mentioned above. In that
case, r can be represented by

r(x) = Ax+ b, (8.4)

where A ∈ Rm×n, b ∈ Rm. Moreover, notice that J(x) = A and
∇f(x) = AT (Ax + b). Also, we have that ∇2rj(x) = 0, j = 1, ...,m
which implies H(x) = 0 and

∇2f(x) = ATA.

This furthermore implies that the problem is convex and thus a sta-
tionary point of function f cannot be a maximizer. Therefore a candi-
date solution x∗ is a point that satisfies ∇f(x∗) = 0. In other words,
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linear least squares problem reduces to the problem of solving system
of linear equations

ATAx∗ = −AT b. (8.5)

The system (8.5) is often called the system of normal equations and it
is usually solved numerically (by means of factorization for instance).
Of course, convex optimization tools are also applicable.

Now, we consider the general case of (8.1), i.e., nonlinear least
squares problem and the Gauss-Newton method. The Gauss-Newton
direction dk is defined by

JT (xk)J(xk)dk = −JT (xk)r(xk). (8.6)

Notice that this is in fact a Quasi-Newton method since the Hessian
is approximated only by the first sum in (8.3), i.e.,

∇2f(xk) ≈ G(xk).

This way the calculation of the second order derivatives ∇2rj(x
k) is

avoided which can bring significant savings in the optimization pro-
cess. Moreover, G(xk) often dominates H(xk) and thus a good ap-
proximation of the Hessian is provided. This furthermore implies that
the Gauss-Newton direction is close to the Newton direction and thus
fast convergence is possible.

Another advantage of the Gauss-Newton direction is its descent
property. Indeed,

(dk)T∇f(xk) = (dk)TJT (xk)r(xk)

= (dk)T (−JT (xk)J(xk)dk)

= −‖J(xk)dk‖2 ≤ 0.

Since, according to (8.6), J(xk)dk = 0 implies JT (xk)r(xk) = 0, i.e.,
∇f(xk) = 0, we conclude that the Gauss-Newton direction is a descent
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direction provided that xk is not a stationary point. Finally, notice
that dk is a solution of the linear least squares problem

min
d∈Rn

1

2
‖J(xk)d+ r(xk)‖2, (8.7)

so the linear least squares problem can be viewed as a subproblem in
the nonlinear least squares setup.

Let us now consider the convergence of the Gauss-Newton method
incorporated in the Armijo line search backtracking framework. The
convergence result presented after the Algorithm 8.1 a consequence of
Theorem 5.3.

Algorithm 8.1

Step 0 Input parameters: x0 ∈ Rn, β, η ∈ (0, 1).

Step 1 Initialization: k = 0, xk = x0.

Step 2 Stopping criterion: If ∇f(xk) = 0 STOP. Otherwise go to
Step 3.

Step 3 Search direction: Compute the Gauss-Newton direction dk by
solving (8.6).

Step 4 Step size: Find the smallest nonnegative integer j such that
αk = βj satisfies the Armijo condition

f(xk + αkd
k) ≤ f(xk) + ηαk∇Tf(xk)dk.

Step 5 Update: Set xk+1 = xk + αkd
k, k = k + 1 and go to Step 2.

Theorem 8.1 Suppose that r ∈ C 1 (Rn) and that the level set L(x0) =
{x ∈ Rn | f(x) ≤ f(x0)} is bounded. Assume that G(x) is uni-
formly positive definite on an open set that contains L(x0). Then ei-
ther the Algorithm 8.1 terminates after a finite number of iterations k̄
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at the stationary point xk̄ or every accumulation point of the sequence
{xk}k∈N is a stationary point of the function f .

Proof. First, notice that the objective function is nonnegative and
thus bounded from below. Also, f ∈ C 1 (Rn) as the same was assumed
for r. Therefore, the line search step is well defined since the Gauss-
Newton direction is a descent direction unless the current point is
stationary. Moreover, Armijo condition implies that all iterates belong
to the level set L(x0). Since the level set is assumed to be bounded,
the same is true for the sequence {xk}k∈N and the continuity of the
gradient ∇f implies that the sequence {∇f(xk)}k∈N is bounded as
well, i.e., there exists a constant M > 0 such that ‖∇f(xk)‖ ≤M for
every k. On the other hand, since G(x) is assumed to be uniformly
positive definite, there exists m > 0 such that λmin(G(xk)) ≥ m and

‖dk‖ = ‖ − (G(xk))−1∇f(xk)‖ ≤ ‖(G(xk))−1‖‖∇f(xk)‖ ≤ 1

m
M.

Therefore, the sequence of search directions is also bounded. More-
over, the definition of G(xk) also implies the existence of a constant
S > 0 such that ‖G(xk)‖ ≤ S, i.e., λmin((G(xk))−1) ≥ 1/S and thus

∇Tf(xk)dk = −∇Tf(xk)(G(xk))−1∇f(xk) ≤ − 1

S
‖∇f(xk)‖2.

Having all this in mind, we conclude that the conditions of the The-
orem 5.3 are fulfilled and that (5.6) holds, so the rest of the proof is
the same as for the Theorem 5.3.

One of the key assumptions that makes the Gauss-Newton method
convergent is that the matrix of the system (8.6) (i.e., the Quasi-
Newton matrix) is uniformly positive definite. In order to ensure
that the Quasi-Newton matrix is positive definite, one can use the so
called regularization. More precisely, having in mind that the matrix
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G(x) = JT (xk)J(xk) � 0, adding a constant positive definite matrix
will provide that the eigenvalues of the new matrix are bounded away
from zero. Let us fix ρ > 0 as a regularization parameter. Then,
using the feature of symmetric quadratic matrices, we obtain that the
smallest eigenvalue λmin of the regularized Hessian satisfies

λmin(JT (xk)J(xk) + ρI) ≥ λmin(JT (xk)J(xk)) + λmin(ρI) ≥ ρ.

The method described above is called the Levenberg-Marquardt method
and the relevant search direction is obtained as the solution of the fol-
lowing system

(JT (xk)J(xk) + ρI)dk = −JT (xk)r(xk). (8.8)

Notice that the Levenberg-Marquardt direction is uniquely determined
while the Gauss-Newton direction is not since G(xk) may be singular.
The convergence analysis of the Levenberg-Marquardt method can be
conducted as in the case of Gauss-Newton method.

Now, let us comment on the rate of convergence of the Gauss-
Newton method. Recall that the Hessian (8.3) is approximated by
G(x). Therefore, we expect that the error of that approximation
(H(x)) will play a key role in determining the convergence rate. Of
course, if H(x) = 0, the convergence rate is quadratic since the New-
ton direction is recovered. On the other hand, if H(x) is close to zero,
then the method can exhibit near-quadratic behavior. Small H(x) oc-
curs in practice since the residuals are often very small or nearly linear
in the vicinity of the solution. We conclude this section by proving
the linear convergence, while the conditions for superlinear rate can
be analyzed throughout the Quasi-Newton approach.

Theorem 8.2 Suppose that r ∈ C 2 (Rn) and consider the Gauss-
Newton algorithm, i.e., xk+1 = xk + dk where dk is defined by (8.6).
Let us suppose that H is Lipschitz continuous. Assume further that
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{xk}k∈N converges to a point x∗ such that ∇f(x∗) = 0 and G(x∗) � 0.
Then {xk}k∈N converges linearly if

‖(G(x∗))−1H(x∗)‖ < 1. (8.9)

Proof. Since r ∈ C 2 (Rn), G(x∗) � 0 and {xk}k∈N converges to x∗,
then (G(xk))−1 exists and there exists m > 0 such that‖(G(xk))−1‖ ≤
1/m := M for all k large enough. Moreover, G is also Lipschitz
continuous and without loss of generality we can denote by L the
Lipschitz constant for G and H. From now on, assume that k is large
enough. Then, using the Mean value theorem we obtain the following.

xk+1 − x∗ = xk − (G(xk))−1∇f(xk)− x∗

= (G(xk))−1
(
G(xk)(xk − x∗)−∇f(xk) +∇f(x∗)

)
= (G(xk))−1(

∫ 1

0

G(xk)(xk − x∗)dt

−
∫ 1

0

∇2f(xk + t(xk − x∗))(xk − x∗)dt)

= (G(xk))−1

(∫ 1

0

(G(xk)−G(xk + t(xk − x∗)))(xk − x∗)dt
)

+

∫ 1

0

G(xk))−1H(xk + t(xk − x∗))(xk − x∗)dt.

Furthermore, using the Lipschitz continuity we obtain

‖xk+1 − x∗‖ ≤ ‖(G(xk))−1‖
∫ 1

0

‖G(xk)−G(xk + t(xk − x∗))‖‖xk − x∗‖dt

+

∫ 1

0

‖(G(xk))−1H(xk + t(xk − x∗))‖‖(xk − x∗)‖dt

≤ ML‖xk − x∗‖2

+

∫ 1

0

‖(G(xk))−1H(xk + t(xk − x∗))‖‖(xk − x∗)‖dt.



8.1 Exercises 77

Now, notice that we can bound ‖(G(xk))−1H(xk + t(xk − x∗))‖ as
follows

‖(G(xk))−1H(xk + t(xk − x∗))‖ = ‖(G(xk))−1(H(xk + t(xk − x∗))±H(xk))‖
≤ ‖(G(xk))−1H(xk)‖
+ ‖(G(xk))−1(H(xk + t(xk − x∗))−H(xk))‖

. ≤ ‖(G(xk))−1H(xk)‖+ML‖xk − x∗‖.

Putting all together we obtain

‖xk+1−x∗‖ ≤ 2ML‖xk−x∗‖2 + ‖(G(xk))−1H(xk)‖‖xk−x∗‖, (8.10)

or equivalently,

‖xk+1 − x∗‖ ≤
(
‖(G(xk))−1H(xk)‖+ 2ML‖xk − x∗‖

)
‖xk − x∗‖.

(8.11)
Since we assumed (8.9), the continuity implies that ‖(G(xk))−1H(xk)‖ <
1 for all k large enough. Finally, we conclude that there exists γ ∈
(0, 1) such that for all k large enough

‖(G(xk))−1H(xk)‖+ 2ML‖xk − x∗‖ ≤ γ

and the result follows immediately.

8.1 Exercises

1. Consider the linear least squares problem

min
x∈Rn

1

2
‖Ax+ b‖2,

where A ∈ Rm×n, b ∈ Rm. Under which conditions on A it has
an unique solution?
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2. Consider a linear regression model function Φ(x; ai) = xTai + ci,
where ai ∈ Rn, ci ∈ R, i = 1, ...,m are attribute measurements,
x ∈ Rn is a decision variable and y1, ..., ym are the measured
values of the target function. State the least squares problem.
State the optimality conditions.

3. Prove that the Gauss-Newton method is equivalent to Newton
method if the linear least squares problem is considered.

4. Consider nonlinear regression model function Φ(x; t) = x1e
x2t

where t represents time. If we know that the real values of the
target variable are y1, ..., ym, state the least squares problem.
Find the Gauss-Newton step if t1 = 1, t2 = 2, y1 = 3, y2 = 4 and
xk = (1, 0)T .

5. Analyze conditions for superlinear convergence of the Gauss-
Newton and the Levenberg-Marquardt method.



Chapter 9

Constrained optimization

From now on, we consider constrained optimization problems in the
standard form which was stated in Chapter 1

min
x∈S

f(x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (9.1)

Recall that the objective function f : D → R, so D actually represents
the set of implicit constraints while S states the explicit constraints.
We say that h : Rn → Rm represents the equality constraints and
g : Rn → Rp determines the inequality constraints.1

Now, denote by f ∗ the optimal value of the problem (9.1), i.e.,

f ∗ = inf
x∈S

f(x). (9.2)

We say that the problem is infeasible if S is empty and in that case
we define

f ∗ =∞.
For example, take S = {x ∈ Rn | x1 − x2 = 0, x1 − x2 = 2} which
is an obviously empty. On the other hand, if the objective function is

1 Other relevant definitions are stated in Chapter 1.
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unbounded from below on the feasible set S, we have

f ∗ = −∞.

An example would be the problem minx≤0 x.
Constrained optimization deals with two important concepts: op-

timality and feasibility. We say that a point x is feasible if it satisfies
both implicit and explicit constraints, i.e., if

x ∈ D ∩ S.

A feasible point x∗ is optimal if

f(x∗) = f ∗.

Recall that a point x̃ is locally optimal if there exists ε > 0 such that
x̃ is a solution of the problem

min
x∈S, ‖x−x̃‖≤ε

f(x). (9.3)

Let us consider some simple examples without explicit constraints.

Example 1 f(x) = x−2. In this case, D = R\{0} and f ∗ = 0, but there is
no optimal point.

Example 2 f(x) = ln(x). In this case, D = R+\{0} and f ∗ = −∞.

Example 3 f(x) = x ln(x). In this case, D = R+\{0}, f ∗ = −e−1 and the
optimal point is x∗ = e−1.

Example 4 f(x) = x3 − 3x. In this case, there are no implicit constraints,
the optimal value is f ∗ = −∞, but there is one local minimum
at x̃ = 1.
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Now, let us consider the problem

min
x∈Rn
−

k∑
i=1

ln(bi − xTai). (9.4)

This is considered as unconstrained problem since there are no ex-
plicit constraints, but implicit constraints are present. The equivalent
problem can be stated as

min
x∈S
−

k∑
i=1

ln(bi − xTai), S = {x ∈ Rn | xTai < bi, i = 1, ..., k.}. (9.5)

Moreover, constraints functions h and g can produce implicit con-
straints as well. Denote by D(f) the domain of considered function
f.Then, the implicit constraints of the optimization problem (9.1) are
in fact

D = D(f)
⋂

(∩mi=1D(hi))
⋂

(∩pj=1D(gj)). (9.6)

The implicit constraints related to h and g are often written as explicit.
For example, the problem

min
x∈S

f(x), S = {x ∈ R | ln(x) ≤ 2}.

can be represented as

min
x∈S

f(x), S = {x ∈ R | ln(x) ≤ 2, x > 0}.

Therefore, without loss of generality, we can consider the case where
D = D(f).

Finding a feasible point itself can be a challenging problem. This
particular problem can be stated as

min
x∈S

c, (9.7)

where c is an arbitrary constant. Thus, f ∗ = c and every feasible point
is optimal if S is nonempty.
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9.1 Convex problems

Within this section, we focus on an important class of constrained
optimization problems - convex problems. The problem (9.1) is convex
if the objective function f and the inequality constraints functions
g1, ..., gm are convex, while the equality constraints functions h1, ..., hp
are affine, i.e., hi(x) = xTai − bi, for i = 1, ..., p.

Convex problems have some very nice properties. One of them is
that the feasible set of a convex problem is convex. Lot of methods
developed for this kind of problems use this fact and make the opti-
mization processes more efficient. Therefore, it is important to notice
if the problem is convex or if it can be transformed into the convex
one. For example, consider

min
x∈S
‖x‖2, S = {x ∈ R2 | x1/(1 + x2

2) ≤ 0, (x1 + x2)2 = 0}. (9.8)

The objective function is convex, but the equality constraint function
is not affine and thus the problem is not convex. However, notice that
the constraints are equivalent to x1 ≤ 0, x1 + x2 = 0 and the problem
can be reformulated as the convex one

min
x∈S
‖x‖2, S = {x ∈ R2 | x1 ≤ 0, x1 + x2 = 0}. (9.9)

Similar to the unconstrained case, one can show that any local
solution is also a global solution. We prove this statement as follows.

Theorem 9.1 Every local solution of a convex constrained problem is
a global solution of the same problem.

Proof. Let us assume that x∗ is a local, but not a global solution of
the convex problem minx∈S f(x). In other words, there exists y∗ ∈ S
such that f(y∗) < f(x∗). Moreover, since x∗ is a local optimum, there
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Figure 9.1: Convex constrained problem.
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exists ε > 0 such that x∗ solves the problem (9.3). Notice that in that
case there holds ‖y∗ − x∗‖ > ε.

Now, let us consider a point z = λy∗ + (1 − λ)x∗, where λ =
ε/(2‖y∗ − x∗‖). Notice that λ ∈ (0, 1/2). Moreover, since the feasible
set S is convex, we conclude that z ∈ S. On the other hand,

‖z − x∗‖ = ‖λ(y∗ − x∗)‖ =
ε

2‖y∗ − x∗‖
‖y∗ − x∗‖ =

ε

2
< ε.

Therefore, z is a feasible point of the problem (9.3) and there holds
f(x∗) ≤ f(z). However, using the convexity of the objective function
we obtain the following contradiction

f(z) ≤ λf(y∗) + (1− λ)f(x∗) < λf(x∗) + (1− λ)f(x∗) = f(x∗),

which completes the proof.

Next, we state the optimality criterion provided that the objective
function is continuously differentiable.

Theorem 9.2 Suppose that f ∈ C 1 (Rn) and that the problem is con-
vex. Then, x∗ is optimal if and only if x∗ ∈ S and for every y ∈ S
there holds

∇Tf(x∗)(y − x∗) ≥ 0. (9.10)

Proof. Suppose that x∗ ∈ S satisfies (9.10). Furthermore, since f is
convex and differentiable, we obtain

f(y) ≥ f(x∗) +∇Tf(x∗)(y − x∗) ≥ f(x∗),

for every y ∈ S. Therefore, x∗ is an optimal point.
Now, assume that x∗ is an optimal point and that (9.10) does not

hold, i.e., there exists z ∈ S such that

∇Tf(x∗)(z − x∗) < 0.
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Consider points of the form u(λ) = λz + (1 − λ)x∗, where λ ∈ [0, 1].
Since the feasible set is convex, these points are feasible. Consider the
function g(λ) = f(u(λ)). Notice that g′(λ) = ∇Tf(u(λ))(z − x∗) and

g′(0) = ∇Tf(x∗)(z − x∗) < 0.

So, we conclude that g′(λ) < 0 for λ > 0 small enough, i.e., g is a
decreasing function of λ for λ > 0 small enough. Therefore, there
exists λ > 0 such that g(λ) < g(0), or equivalently,

f(u(λ)) < f(u(0)) = f(x∗).

Since such u(λ) is feasible, x∗ cannot be an optimal point. This is a
contradiction, so we conclude that the solution must satisfy (9.10) for
every y ∈ S.

9.2 Exercises

1. Prove that the feasible set of a convex problem is convex.

2. Consider the convex problem

min
Ax=b

f(x),

where A ∈ Rp×n, b ∈ Rp. Prove that a point x∗ is a solution of
that problem if and only if Ax∗ = b and there exists µ ∈ Rp such
that ∇f(x∗) = ATµ.

3. Consider the convex problem

min
x≥0

f(x).

Prove that a point x∗ is a solution of that problem if and only
if x∗ ≥ 0, ∇f(x∗) ≥ 0 and x∗i [∇f(x∗)]i = 0 for i = 1, ..., n.
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4. Solve the problem
min
x≥0

f(x)

with the following objective functions:

(a) f(x) = x1 + x2.

(b) f(x) = x1 + x2
2.

(c) f(x) = (x1 + 1)2 + x2
2.

(d) f(x) = (x1 + 1)2 + (x2 − 1)2.

(e) f(x) = (x1 − 1)2 + (x2 − 1)2.

(f) f(x) = ‖x‖2.

Sketch the level curves of each objective function.

5. Solve the following convex problems:

(a) minx∈S f(x), S = {x ∈ R2 | 2x1 + x2 = 1, x1 − x2 = 0}.
(b) minx∈S(x1 − 1)2 + x2

2, S = {x ∈ R2 | x1 = x2}.
(c) minx∈S ‖x‖2, S = {x ∈ R3 | 2x1 + x2 = 1, x1 − x2 = 0}.
(d) minx∈S 0.5‖x− 1‖2, S = {x ∈ R3 | x1 = x2, x2 + x3 = 2}.

6. Consider the problem minx∈S f(x) where

S = {x ∈ R2 | 2x1 + x2 ≥ 1, x1 + 3x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}.

Sketch the feasible set. For each of the following objective func-
tions, find the set of optimal solutions and determine the optimal
value.

(a) f(x) = x1 + x2.

(b) f(x) = −x1 − x2.
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(c) f(x) = x1.

(d) f(x) = max{x1, x2}.
(e) f(x) = x2

1 + 9x2
2.



Chapter 10

Optimality conditions -
constrained optimization

Within this chapter we consider characterizations of optimal points for
constrained optimization problems in the standard form (9.1). Let us
assume that the domain D is nonempty and all the relevant functions
are continuously differentiable. We form a function which combines
optimality and feasibility throughout the weighted sum of the objec-
tive function and the constraints functions. This function is called the
Lagrangian and it is defined as follows:

L(x, λ, µ) := f(x)+λTg(x)+µTh(x) = f(x)+

p∑
i=1

λigi(x)+
m∑
j=1

µjhj(x),

(10.1)
where λ = (λ1, ..., λp)

T ∈ Rp are the Lagrange multipliers associated
to inequality constraints and µ = (µ1, ..., µm)T ∈ Rm are the Lagrange
multipliers associated to equality constraints. Vectors λ and µ are also
called the dual variables.
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10.1 Duality

In order to derive optimality conditions, we form the Lagrange dual
function

l(λ, µ) := inf
x∈D

L(x, λ, µ). (10.2)

Notice that the Lagrangian L is an affine function with respect to λ
and µ. It can be shown that the infimum of a family of affine functions
is always concave, so we conclude that l is a concave function regardless
of the convexity of the problem (9.1). We use this fact in the sequel
to obtain the lower bound on the optimal value of problem (9.1).

Suppose that x ∈ D is a feasible point and that λ ≥ 0. Then we
have g(x) ≤ 0, h(x) = 0 and

p∑
i=1

λigi(x) +
m∑
j=1

µjhj(x) ≤ 0.

The above inequality and (10.1) yield L(x, λ, µ) ≤ f(x) and thus

l(λ, µ) = inf
y∈D

L(y, λ, µ) ≤ L(x, λ, µ) ≤ f(x). (10.3)

Since the inequality holds for an arbitrary feasible x, we conclude that

l(λ, µ) ≤ min
x∈S

f(x) = f ∗. (10.4)

Therefore, for any λ ≥ 0 and µ ∈ Rm, the Lagrange dual function
l(λ, µ) represents a lower bound of the optimal value of problem (9.1).

The inequality (10.4) trivially holds if l(λ, µ) = −∞, but does not
provide any useful information. Therefore, we are interested in points
that belong to the domain of the Lagrange dual function. So, the
points of our interest are (λ, µ) ∈ D(l) such that λ ≥ 0. These pairs
of dual variables are called dual feasible.
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In order to obtain the best possible lower bound, we pose the La-
grange dual problem

max
λ≥0

l(λ, µ). (10.5)

Notice that this problem is convex. Therefore, there exist an unique
solution (λ∗, µ∗) which is called the dual optimal or we refer to (λ∗, µ∗)
as the optimal Lagrange multipliers.

10.2 KKT conditions and the strong du-

ality

In this section we derive the set of optimality conditions called the
KKT (Karush-Kuhn-Tucker) conditions. We saw that l(λ, µ) ≤ f ∗,
i.e.,

− f ∗ ≤ −l(λ, µ) (10.6)

if (λ, µ) is dual feasible. Furthermore, assuming that x is primal fea-
sible, i.e., feasible for problem (9.1), we obtain

0 ≤ f(x)− f ∗ ≤ f(x)− l(λ, µ) := ε(x, λ, µ) (10.7)

and we say that x is ε-suboptimal with ε = ε(x, λ, µ). We call this ε
the duality gap between primal and dual variables.

If there is no duality gap, i.e., if ε(x∗, λ∗, µ∗) = 0, then x∗ is primal
optimal and (λ∗, µ∗) is dual optimal. Indeed, if ε(x∗, λ∗, µ∗) = 0 then
f(x∗) = f ∗ and, since x∗ is assumed to be primal feasible, we conclude
that x∗ is an optimal point of problem (9.1). On the other hand,
since f ∗ is actually an upper bound for l in the case of feasible dual
variables, having l(λ∗, µ∗) = f(x∗) means that (λ∗, µ∗) is a solution
of the dual problem (10.5). This fact is often used as a termination
criterion for algorithms - they are stopped if the duality gap is smaller
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than some tolerance δ > 0, i.e., if

ε(xk, λk, µk) ≤ δ. (10.8)

Let us define the strong duality needed for further derivation.

Definition 11 Strong duality holds if the primal and dual optimal
values are attained and equal.

Assume that the strong duality holds. Then ε(x∗, λ∗, µ∗) = 0 if and
only if x∗ is primal optimal and (λ∗, µ∗) is dual optimal. Furthermore,

f(x∗) = l(λ∗, µ∗)

= inf
x∈D

L(x, λ∗, µ∗)

≤ L(x∗, λ∗, µ∗)

= f(x∗) + (λ∗)Tg(x∗) + (µ∗)Th(x∗)

≤ f(x∗).

Thus, we conclude that the previous derivation holds with the equal-
ities. Two important conclusions can be derived from this fact. First,

inf
x∈D

L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗), (10.9)

i.e., x∗ is a minimizer of L(x, λ∗, µ∗) and there holds

∇xL(x∗, λ∗, µ∗) = 0. (10.10)

However, it does not have to be unique. Second conclusion is that

f(x∗) + (λ∗)Tg(x∗) + (µ∗)Th(x∗) = f(x∗),

that is,
(λ∗)Tg(x∗) + (µ∗)Th(x∗) = 0. (10.11)
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Since x∗ is feasible, we have that h(x∗) = 0 and thus (λ∗)Tg(x∗) = 0.
Furthermore, since g(x∗) ≤ 0 and λ∗ ≥ 0, we conclude that

λ∗i gi(x
∗) = 0, i = 1, ..., p. (10.12)

The condition (10.12) is known as the complementarity condition. It
implies that if the Lagrange multiplier λ∗i > 0, then gi(x

∗) = 0, i.e.,
x∗ is on the boundary determined by the constraint gi. In general, if
gi(x) = 0, we say that the ith constraint is active at x. For instance, if
we have gi(x) = x2

1 +x2
2−1, then the feasible points are within the unit

circle and if this constraint is active at x∗ we know that this point is on
the boundary of the circle. On the other hand, if gi(x

∗) < 0, i.e., if the
point x∗ is strictly inside of the area determined by gi, then λ∗i = 0.
Recall that these conclusions are derived only under the assumption
of strong duality. We sum them up into the famous KKT conditions.
Notice that these are necessary conditions provided that the strong
duality holds.

Definition 12 KKT conditions are:

a) g(x∗) ≤ 0 (feasibility - inequality constraints).

b) h(x∗) = 0 (feasibility - equality constraints).

c) λ∗ ≥ 0 (dual feasibility).

d) λ∗i gi(x
∗) = 0, i = 1, ..., p (complementarity).

e) ∇f(x∗) +
∑p

i=1 λ
∗
i∇gi(x∗) +

∑m
i=j µ

∗
j∇hj(x∗) = 0 (optimality).

In general, it is very hard to check if the strong duality holds in ad-
vance. Nevertheless, KKT conditions are often used as a guidance for
finding candidate solutions. The conditions are often used in construc-
tion of many algorithms. The KKT system has n + p + m unknowns
and this is the number of equality equations in the KKT system as
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well. So, the candidate solutions may be obtained by solving the sys-
tem of equations defined by the KKT conditions b) and d)-e), while
the true solutions must also satisfy the remaining conditions a) and c).
However, the system of equations is nonlinear in general and therefore
not easy to solve.

10.2.1 Convex problems

An important special case is a convex problem (9.1). In that case,
KKT conditions are sufficient. Indeed, assume that KKT conditions
hold. Then, a)-b) imply that the point x∗ is feasible. Moreover, c)
implies that the Lagrangian is convex and thus e) implies that x∗ is a
global minimizer of L(x, λ∗, µ∗), so

l(λ∗, µ∗) = inf
x∈D

L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗) = f(x∗)

where the last equality comes from b) and d). Therefore, the opti-
mality gap vanishes ε(x∗, λ∗, µ∗) = 0 which implies that x∗ is primal
optimal and (λ∗, µ∗) is dual optimal as we already discussed. We for-
malize this as follows.

Theorem 10.1 Suppose that x∗ and (λ∗, µ∗) are such that the KKT
conditions are satisfied and the problem (9.1) is convex. Then x∗ is a
solution of the problem (9.1).

We end this subsection by stating the Slater’s condition which implies
the strong duality of a convex problem.

Definition 13 Suppose that the problem (9.1) is convex. Slater’s
condition holds if there exist at least one feasible point x̃ such that
gi(x̃) < 0 for all i = 1, ..., p.

Finally, having all the previous discussions in mind, we state the fol-
lowing result for convex problems.
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Theorem 10.2 Suppose that the Slater’s condition holds. Then x∗ is
a solution of a convex problem (9.1) if and only if the KKT conditions
hold.

10.3 KKT conditions and LICQ

First and second order optimality conditions are often analyzed under
the assumption of linear independence constraint qualification (LICQ).

Definition 14 LICQ holds at point x∗ if the gradients of active con-
straints at the point x∗ are linearly independent.

Recall that constraint gi is active at x∗ if gi(x
∗) = 0. Also notice that

if the point x∗ is feasible, all the equality constraints hi are active. We
state the first order optimality conditions as follows.

Theorem 10.3 Suppose that x∗ is a local solution of the problem (9.1)
and that LICQ holds at the point x∗. Then there are Lagrange multi-
pliers (λ∗, µ∗) such that the KKT conditions are satisfied.

Next, we state second order conditions. They imply that the Hessian of
the Lagrangian ∇2

xL(x∗, λ∗, µ∗) has to be positive semidefinite on the
special subset of Rn. Roughly speaking, this subset contains directions
which are nearly feasible. In order to define such subset, let us start
with the following subsets.

Let x∗ and (λ∗, µ∗) be primal and dual variables that satisfy KKT
conditions. Then

A1 = {d ∈ Rn | ∇Thi(x
∗)d = 0, i = 1, ...,m}, (10.13)

A2 = {d ∈ Rn | ∇Tgi(x
∗)d = 0 for all active constraints with λ∗i > 0},

A3 = {d ∈ Rn | ∇Tgi(x
∗)d ≤ 0 for all active constraints with λ∗i = 0},
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A = A1 ∩ A2 ∩ A3. (10.14)

The directions from the above defined sets retain feasibility with re-
spect to linear approximations of the constraints. For example, assume
that d ∈ A1. Then, for arbitrary i we have

hi(x
∗ + d) ≈ hi(x

∗) +∇Thi(x
∗)d = hi(x

∗) = 0.

Furthermore, if the constraint hi is linear, then hi(x
∗+d) = 0 and the

point x∗ + d remains feasible with respect to the constraint hi. Con-
sidering A2, if the constraint gi is linear, it remains active at x∗ + d
for d ∈ A2. Then the corresponding Lagrange multiplier remains posi-
tive since the complementarity condition holds. On the other hand, if
λ∗i = 0 and we consider d ∈ A3, then we can allow gi to became inac-
tive, i.e., we aim for gi(x

∗ + d) ≤ 0. Notice that if a constraint is not
active, then we can always find small enough step size for an arbitrary
direction d such that the feasibility with respect to the constraint is
not violated. The second order necessary conditions are as follows.

Theorem 10.4 Suppose that x∗ is a local solution of the problem (9.1)
and that LICQ holds at the point x∗. Suppose that the Lagrange mul-
tipliers (λ∗, µ∗) are such that the KKT conditions hold. Then,

dT∇2
xL(x∗, λ∗, µ∗)d ≥ 0 for all d ∈ A.

Finally, we state the second order sufficient conditions.

Theorem 10.5 Suppose that x∗ and (λ∗, µ∗) are such that the KKT
conditions are satisfied and

dT∇2
xL(x∗, λ∗, µ∗)d > 0 for all d ∈ A\{0}.

Then x∗ is a strict local solution of the problem (9.1).
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10.4 Exercises

1. Prove that the pointwise infimum of a family of affine functions
is concave.

2. Show that the problem (10.5) is convex.

3. Show that the Lagrangian related to the convex problem (9.1) is
also convex with respect to x, provided that λ is dual feasible.

4. Assume that x∗ and (λ∗, µ∗) satisfy KKT conditions. Show that
∇Tf(x∗)d = 0 for every d ∈ A defined by (10.14).

5. State the KKT conditions and solve the following problem

min
x∈S

f(x) = (x1 − 2)2 + x2
2

with

(a) S = {x ∈ R2 | x1 + x2 ≥ 1}.
(b) S = {x ∈ R2 | x1 + x2 ≤ 1}.
(c) S = {x ∈ R2 | x1 + x2 ≤ 1, x2

1 + x2 ≤ 1, x2 − x1 = −2}.

6. Analyze the optimality conditions for the following problem

min
x∈S

f(x) = cTx,

where c ∈ Rn and

(a) S = {x ∈ Rn | Ax = b}, b ∈ Rm, A ∈ Rm×n.

(b) S = {x ∈ Rn | aTx ≤ b}, b ∈ R, a ∈ Rn, a 6= 0.

(c) S = {x ∈ Rn | d ≤ x ≤ u}, d, u ∈ Rn.

(d) S = {x ∈ Rn | 1Tx = 1, x ≥ 0}.
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7. Form the dual problem of

min
Ax=b
‖x‖2,

where b ∈ Rm, A ∈ Rm×n.

8. Form the dual problem of

min
Ax≤b
‖x‖2,

where b ∈ Rm, A ∈ Rm×n.

9. Consider the problem

min
x1+x2=1, x∈R2

‖x‖2.

Solve this problem and its dual problem. Compare the optimal
values. Does strong duality hold?

10. Consider the problem

min
x1+x2≤1, x∈R2

‖x‖2.

Solve this problem and its dual problem. Compare the optimal
values. Does strong duality hold?



Chapter 11

Some special classes of
constrained problems

In general, solving constrained optimization problems is not an easy
task. There is no algorithm which works well for all classes of prob-
lems. However, methods specialized for a certain class of problems are
developed, so classifying a problem properly is an important part of
problem solving followed by choice of an appropriate method. The sec-
ond part of the solving procedure is to choose an appropriate method.
Within this chapter, we will consider two important special classes
of problems - problems with linear equality constraints and problems
with the so called box constraints. We will also provide representative
algorithms. The first class of problems serves as a good example of the
adapted Newton method for the constrained optimization framework.
The second class, box-constrained problems is of importance by itself
but the box constrained problems are also encountered as subproblems
in general constrained problems. More details are available in the next
chapter.
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11.1 Problems with linear equality con-

straints

Within this section we observe problems of the form

min
Ax=b

f(x), (11.1)

where f : Rn → R, f ∈ C 2 (Rn), A ∈ Rm×n, b ∈ Rm and rank(A) =
m < n. Moreover, we will focus on the case when the considered
problem is convex leaving the general (nonconvex) case for exercises.

Recall that x∗ is a KKT point of the problem (11.1) if there exist
µ∗ ∈ Rm such that

∇f(x∗) + ATµ∗ = 0 and Ax∗ = b. (11.2)

Also recall the KKT conditions are both necessary and sufficient if the
problem (11.1) is convex. This fact motivated the method described
below.

11.1.1 The Newton method for constrained prob-
lems

Let us first consider the problem with quadratic objective function

f(x) =
1

2
xTGx+ xT q + c. (11.3)

Since the problem is assumed to be convex and ∇2f(x) = G, the
matrix G is symmetric and positive semidefinite. Furthermore, the
KKT conditions are reduced to

Gx∗ + q + ATµ∗ = 0, Ax∗ = b, (11.4)
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and the KKT system in the matrix form can be stated as follows[
G AT

A 0

] [
x∗

µ∗

]
=

[
−q
b

]
. (11.5)

Therefore, solving the problem (11.1) reduces to solving the (linear)
KKT system. Let us denote the matrix of that system by B. If B is
nonsingular, there exists an unique pair of primal-dual optimal points
(x∗, µ∗). This is true if the matrix G is positive definite on the null
space of A. Of course, if the objective function is strongly convex, then
G is positive definite on the whole Rn and the matrix B is nonsingular.

If B is singular, but the KKT system is solvable, then any solution
is optimal for the original problem. Finally, if the KKT system is not
solvable, then the problem (11.1) is unbounded or infeasible.

Having the quadratic case in mind, we can develop Newton method
for the general case as follows.

Assume that x is a feasible point. If we want to retain the feasi-
bility, we need a step d which belongs to the null space of A, i.e.,

Ad = 0. (11.6)

Then, applying any step size α we have

A(x+ αd) = Ax+ αAd = b.

Now, Taylor’s expansion of the second order gives

f(x+ d) ≈ f(x) +∇Tf(x)d+
1

2
dT∇2f(x)d := f̃(d). (11.7)

Identifying f(x),∇f(x) and ∇2f(x) with c, q and G from (11.3), re-
spectively, and observing the subproblem

min
Ad=0

f̃(d), (11.8)
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using the same reasoning as above, we obtain the following (approxi-
mate) KKT system[

∇2f(x) AT

A 0

] [
d
w

]
=

[
−∇f(x)

0

]
. (11.9)

Solving this problem yields the Newton step d and the approximate
dual variable w. Notice that, besides (11.6), the Newton step satisfies

∇2f(x)d+ ATw = −∇f(x). (11.10)

Another interpretation of the Newton step comes from linearization
of the KKT conditions. Namely, the ideal step would be the one that
reaches a KKT point, i.e., that satisfies ∇xL(x + d, w) = 0 for some
w. Approximating the gradient of the Lagrangian by

∇xL(x+ d, w) ≈ ∇xL(x,w) +∇2
xL(x,w)d

and making the right hand side equal to zero one gets (11.10). Fur-
thermore, using the same equality we conclude that the Newton step
is nonascent. Indeed, using (11.6) and the convexity we obtain

dT∇f(x) = −dT∇2f(x)d− dTATw = −dT∇2f(x)d ≤ 0. (11.11)

Furthermore, if we assume that f is strongly convex with parameter
m then

dT∇f(x) = −dT∇2f(x)d ≤ −m‖d‖2. (11.12)

Therefore, in that case, d is a descent direction whenever ‖d‖ 6= 0.
However, notice that if d = 0 then x is a KKT point since it is feasible
and (11.10) implies ATw +∇f(x) = 0. Notice that (11.12) implies

‖d‖2 ≤ 1

m
dT∇2f(x)d,
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so dT∇2f(x)d can be viewed as a measure of optimality. The quantity

z(x) :=
√
dT∇2f(x)d

is called the Newton decrement and it is common to have the stopping
criterion of the form z(xk) ≤ ε. Let us state the algorithm.

Algorithm 11.1

Step 0 Input parameters: Find x0 ∈ Rn such that Ax0 = b, β, η ∈
(0, 1), k = 0.

Step 1 Search direction: Compute the Newton direction dk that sat-
isfies (11.9). If dk = 0 STOP. Otherwise go to Step 2.

Step 2 Step size: Find the smallest nonnegative integer j such that
αk = βj satisfies the Armijo condition

f(xk + αkd
k) ≤ f(xk) + ηαk∇Tf(xk)dk.

Step 3 Update: Set xk+1 = xk + αkd
k, k = k + 1 and go to Step 1.

Notice that the feasibility is retained at every iteration. Furthermore,
using the descent property (11.12) and the fact that ‖d‖ = 0 implies
that the corresponding x is stationary point. Following the same ideas
as in the proof of Theorem 5.3 we can prove the convergence result.

Theorem 11.1 Suppose that f : Rn → R, f is strongly convex and
bounded from bellow on the feasible set S = {x ∈ Rn | Ax = b} and
f ∈ C 2 (S ). Moreover, assume that the sequence of search directions
{dk}k∈N is bounded. Then, either the Algorithm 11.1 terminates after
finite number of iterations k̄ at a KKT point xk̄ of the problem (11.1)
or every accumulation point of the sequence {xk}k∈N is a KKT point
of the problem (11.1).
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Now, let us comment the case when the Newton method is applied
with possibly infeasible starting point x, i.e., when we have Ax 6= b in
general. Still, we would like to obtain a direction which takes us to a
KKT point, so we are searching for d such that x + d ≈ x∗ where x∗

satisfies

Ax∗ = b,∇f(x∗) + ATµ∗ = 0.

Let us approximate w ≈ µ∗ and

∇f(x+ d) ≈ ∇f(x) +∇2f(x)d.

Putting this in KKT conditions we obtain

∇f(x) +∇2f(x)d+ ATw = 0. (11.13)

We also impose the feasibility by asking for

A(x+ d) = b. (11.14)

The previous two inequalities can be stated in a matrix form[
∇2f(x) AT

A 0

] [
d
w

]
=

[
−∇f(x)
b− Ax

]
. (11.15)

So, if we have infeasible starting point x0, one possibility is to perform
one step as above, i.e., x1 = x0 + d0 where d0 satisfies (11.15) and
then use the Algorithm 11.1 to ensure the global convergence. On
the other hand, imposing the feasibility may reduce the optimality
progress of the algorithm. So, let us see what happens if we apply the
line search from the start to obtain the sufficient reduction and not
necessary a feasible point. Let us denote the residual, i.e., the measure
of infeasibility, by

r(x) = Ax− b.
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Then

r(x1) = A(x0 + α0d
0)− b

= Ax0 − b+ α0Ad
0

= r(x0) + α0(b− Ax0)

= (1− α0)r(x0).

Applying this recursively we obtain

r(xk) = r(x0)
k−1∏
i=0

(1− αi). (11.16)

This clearly reveals that the feasibility is reached if the full step is ac-
cepted at any point. On the other hand, the sequence of iterates tends
to the feasible point if, for instance, step size sequence is uniformly
bounded away from zero.

11.2 Box constrained optimization

Within this subsection we consider problems of the form

min
l≤x≤u

f(x), (11.17)

where l, u ∈ Rn
∞ and f is continuously differentiable on a feasible set

S = {x ∈ Rn : l ≤ x ≤ u}. Although the approach presented in this
section may easily be extended to the case of a generic convex set S,
we focus our attention to the box constrained case. Let us denote an
orthogonal distance of point x from a set S by distS(x), i.e.,

distS(x) = inf
y∈S
‖y − x‖. (11.18)
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If S is a box, this distance is easy to calculate. Moreover, one may use
minimum instead of infimum and we define an orthogonal projection
of point x on a set S by

PS(x) = arg min
y∈S
‖y − x‖. (11.19)

We define the projected gradient direction by

d = d(x) = PS(x−∇f(x))− x. (11.20)

This direction enjoys properties stated in Theorem 11.2. Recall that
Theorem 9.2 implies that x∗ is a solution of a convex problem (11.17)
if and only if ∇Tf(x∗)(x − x∗) ≥ 0 for every x ∈ S. However, if the
objective function f is not necessary convex, then we say that x∗ is a
(constrained) stationary point of problem (11.17) if

∇Tf(x∗)(x− x∗) ≥ 0 (11.21)

holds for every x ∈ S.

Theorem 11.2 [9] Suppose that f ∈ C 1 (S ) and x ∈ S. Then the
projected gradient direction d defined by (11.20) satisfies the following:

a) dT∇f(x) ≤ −‖d‖2.

b) d = 0 if and only if x is a stationary point for the problem
(11.17).

Proof. First, notice that the projection z∗ := PS(z) is a solution of
the following convex problem

min
y∈S

g(y) :=
1

2
‖y − z‖2. (11.22)
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Figure 11.1: Projected gradient direction.
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Therefore, using the optimality conditions stated in Theorem 9.2, we
conclude that ∇Tg(z∗)(y − z∗) ≥ 0 for every y ∈ S. Since this in-
equality holds for an arbitrary z, having in mind the definition of the
function g and the projection z∗, we obtain that for every z ∈ Rn and
every y ∈ S

(PS(z)− z)T (y − PS(z)) ≥ 0. (11.23)

Now, specifying z = x−∇f(x) and y = x, we get

(PS(x−∇f(x))− x+∇f(x))T (x− PS(x−∇f(x))) ≥ 0, (11.24)

i.e., −dTd−∇Tf(x)d ≥ 0 which obviously implies

dT∇f(x) ≤ −‖d‖2. (11.25)

Let us prove the second part of the statement.
First, assume that x∗ is a stationary point for the problem (11.17),

i.e., (11.21) holds for every x ∈ S. Furthermore, (11.20) implies that
x∗ + d(x∗) = PS(x∗ −∇f(x∗)) ∈ S, so replacing x with x∗ + d(x∗) in
(11.21) we obtain

∇Tf(x∗)d(x∗) ≥ 0. (11.26)

On the other hand, (11.25) implies that ∇Tf(x∗)d(x∗) ≤ −‖d(x∗)‖2 ≤
0, so combining this inequality with (11.26) yields d(x∗) = 0.

Now we prove the reverse implication. Assume that d(x∗) = 0.
Then, replacing z with x∗−∇f(x∗) in (11.23) we obtain that∇Tf(x∗)(y−
x∗) ≥ 0 for every y ∈ S and the statement follows.

Theorem 11.2 implies that d is a descent direction provided that
x is not a stationary point of (11.17). Therefore, the line search algo-
rithm can be applied as follows.

Algorithm 11.2

Step 0 Input parameters: x0 ∈ S, β, η ∈ (0, 1), k = 0.
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Step 1 Search direction: Compute the projected gradient direction d
defined by (11.20). If dk = 0 STOP. Otherwise go to Step 2.

Step 2 Step size: Find the smallest nonnegative integer j such that
αk = βj satisfies the Armijo condition

f(xk + αkd
k) ≤ f(xk) + ηαk∇Tf(xk)dk.

Step 3 Update: Set xk+1 = xk + αkd
k, k = k + 1 and go to Step 1.

Notice that the previous algorithm retains feasibility and fits into the
common line search framework. Therefore, following the ideas from
the proof of Theorem 5.3 and using Theorem 11.17, one can show the
following result.

Theorem 11.3 Suppose that f : Rn → R, f is bounded from bellow
on the feasible set S = {x ∈ Rn | l ≤ x ≤ u} and f ∈ C 1 (S ).
Moreover, assume that the sequence of search directions {dk}k∈N is
bounded. Then, either the Algorithm 11.2 terminates after a finite
number of iterations k̄ at a stationary point xk̄ of the problem (11.17)
or every accumulation point of the sequence {xk}k∈N is a stationary
point of the problem (11.17).

11.3 Exercises

1. Consider the problem (11.1) and discuss the case of condition
rank(A) = m < n being violated.

2. Prove Theorem 11.1.

3. Consider the problem (11.1). Let x̃ be a feasible point.

(a) Show that all feasible points can be represented by x = x̃+u
where u ∈ Null(A).
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(b) Show that x = x̃ + αu is feasible for all u ∈ Null(A) and
α ∈ R.

(c) Define the function ϕ : Rn−m → R as

ϕ(γ) = f(x̃+ Zγ),

where Z ∈ Rn×(n−m) represents a basis of Null(A). Con-
sider the unconstrained problem

minϕ(γ). (11.27)

Show that γ∗ is a local (global) solution of the problem
(11.27) if and only if x∗ = x̃+Zγ∗ is a local (global) solution
of problem (11.1).

(d) Show that the first order optimality conditions for the prob-
lem (11.1) can be expressed as

Ax∗ = b, ZT∇f(x∗) = 0. (11.28)

(e) Show that (11.28) is equivalent to

Ax∗ = b, ∇f(x∗) = ATµ∗ for some µ∗ ∈ Rm.
(11.29)

(f) Show that the sufficient second order optimality conditions
for the problem (11.1) can be expressed as

Ax∗ = b, ZT∇f(x∗) = 0, ZT∇2f(x∗)Z � 0. (11.30)

(g) Analyze the optimality conditions if the objective function
is strictly convex.

4. Define ϕk(γ) = f(xk+Zγ) where Z is as in the previous exercise.
Suppose that xk is feasible, but it is not a solution of the problem
(11.1). Define

dk = −ZZT∇f(xk).
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(a) Prove that dk is a descent direction for the function f at
point xk.

(b) Prove that the line search along the direction dk maintains
feasibility.

(c) Prove that (a) and (b) are also true for

dk = −ZHk∇ϕk(0)

for any positive definite matrix Hk ∈ R(n−m)×(n−m).

(d) Suppose that f is twice continuously differentiable and con-
sider Newton step dk defined through (11.9). Show that dk

also satisfies

dk = Zvk, where ∇2ϕk(0)vk = −∇ϕk(0). (11.31)

5. Consider a problem

min
x1+2x2+3x3=6

x2
1 + 3x2

2 + 2x2
3.

Let x0 = (1, 1, 1)T be a starting point. Compute d0 satisfying
(11.31) on the relevant problem of the form (11.27) to obtain x1.
Check if x1 is an optimal point.

6. Solve the previous task by applying the Newton step defined in
(11.9). Do we obtain the same point x1?

7. Consider the problem

min
Ax=b

1

2
xTQx− cTx,

where Q ∈ Rn×n and QT = Q. Prove that x∗ is a local solution
if and only if it is a global solution of the considered problem.
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8. Consider a problem
min

x1+x2=1
x2

1 + x2
2.

(a) Find an optimal point x∗.

(b) Consider a penalty problem

minx2
1 + x2

2 + ρ(x1 + x2 − 1)2,

where ρ > 0. Find an optimal point of this problem x∗(ρ).

(c) Show that limρ→∞ x
∗(ρ) = x∗.

9. Find the analytical expression for the projection function PS if:

(a) S is a box.

(b) S is a unit ball.

10. Sketch the direction d defined by (11.20).

11. Show that all the iterates of the Algorithm 11.2 belong to the
feasible set S provided that it is convex.

12. Prove the Theorem 11.3.



Chapter 12

Penalty methods

Within this section, we consider one of the approaches for solving
constrained optimization problems of the generic form (9.1), i.e.,

min
x∈S

f(x), S = {x ∈ Rn | h(x) = 0, g(x) ≤ 0}. (12.1)

The methods that we consider are referred to as penalty methods and
they aim to solve considered problems by employing unconstrained
optimization technics. For other approaches such as Interior point
methods and Active set methods, one can see [16] for instance.

The penalty method transforms the problem (12.1) into the un-
constrained optimization problem

min
x∈Rn

Φ(x), (12.2)

where Φ(x) is called the penalty function, or into a problem with
some simple constraints (for example, box) which can be solved by
using methods of projected gradient type for instance.

The form of the penalty function is usually as follows

Φ(x, τ) = f(x) + τρ(x), (12.3)
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where ρ(x) represents constraint violation measure and τ > 0 is the
penalty parameter. So, the penalty function combines optimality and
feasibility into one objective function. The function ρ : Rn → R+

satisfies the following condition

ρ(x) = 0 ⇐⇒ x ∈ S. (12.4)

For example, it may be defined as the distance of the point x from the
feasible set S.

Most penalty methods assume that a sequence of penalty problems
of the form

min
x∈Rn

Φ(x, τk), (12.5)

are solved, where the sequence of penalty parameters tends to infinity,
i.e.,

lim
k→∞

τk =∞. (12.6)

That way, the infeasibility is more and more penalized to force the
iterates to converge to the feasible set.

If there exists penalty parameter large enough such that the prob-
lems (12.1) and (12.5) are equivalent, then we say that the penalty
function is exact. More precisely, we have the following definition.

Definition 15 The penalty function Φ is exact if there exists τ̄ > 0
such that for all τ ≥ τ̄ any local solution of the problem (12.1) is a
local minimizer of the penalty function Φ(x, τ).

An example of exact penalty function is

Q1(x, τ) = f(x) + τ(
m∑
i=1

|hi(x)|+
p∑
i=1

max{0, gi(x)}).

The definition implies that we can obtain a local solution of the con-
strained problem by solving a single unconstrained problem provided
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that the penalty parameter is large enough. However, finding a suit-
able penalty parameter is not that easy. So, usually one still has
to solve the (finite) sequence of unconstrained optimization problems
increasing the penalty parameter gradually. Another problem that
arises with exact penalty function is that such functions are usually
not differentiable which makes the straightforward application of the
unconstrained optimization methods described in some of the previous
chapters impossible.

In the following section, we consider quadratic penalty function.
This penalty function is not exact, but it is convenient since it is
differentiable - at least in the case of equality constraints.

12.1 Quadratic penalty function

Quadratic penalty function takes the following form

Q(x, τ) = f(x) +
τ

2
(
m∑
i=1

(hi(x))2 +

p∑
i=1

(max{0, gi(x)})2). (12.7)

Notice that if the inequality constraints are present, the quadratic
penalty function may be less smooth than the objective and the con-
straints functions. However, there are some techniques that can trans-
form inequality into equality constraints as we will see latter. There-
fore, we restrict our attention to the equality constrained case

min
h(x)=0

f(x). (12.8)

The framework algorithm is given below.

Algorithm 12.1

Step 0 Input parameters: Take x0 ∈ Rn, ε0 ≥ 0, τ0 > 0, k = 0.
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Step 1 Initialization: x0
start = x0.

Step 2 Solve the subproblem minQ(x, τk) approximately: Start with
xkstart, terminate when

‖∇xQ(xk, τk)‖ ≤ εk. (12.9)

Step 3 Update the penalty parameter: Choose τk+1 > τk.

Step 4 Update the tolerance: Choose εk+1 ∈ [0, εk).

Step 5 Update the starting point: Set xk+1
start = xk.

Step 6 Set k = k + 1 and go to Step 2.

Large penalty parameter may yield difficult subproblems to solve if
the derivatives become ill-conditioned. Thus, the starting penalty pa-
rameter is usually rather modest. The rule presented in Step 5 is often
called the warm start as the solution of the previous subproblem serves
as an initial approximation for the subsequent problem. This strategy
may reduce the number of inner (subproblem) iterations significantly.

Notice that the subproblems do not have to be solved exactly.
However, if we assume to have exact subproblem solutions, we obtain
the following result.

Theorem 12.1 Suppose that f, h ∈ C 1 (Rn) and that each xk is the
exact global minimizer of function Q(x, τk). Suppose that (12.6) holds.
Then every accumulation point of the sequence {xk}k∈N generated by
Algorithm 12.1 is a solution of the problem (12.8).

Proof. Let x̄ be a global solution of the problem (12.8). Then there
holds that h(x̄) = 0 and f(x̄) ≤ f(x) for every x ∈ S. Now, since xk

is a global minimizer of Q(x, τk), there holds

Q(xk, τk) ≤ Q(x̄, τk), (12.10)
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so we conclude

f(xk) +
1

2
τk‖h(xk)‖2 ≤ f(x̄) +

1

2
τk‖h(x̄)‖2 = f(x̄). (12.11)

The last inequality further implies

‖h(x∗)‖2 ≤ 2

τk
(f(x̄)− f(xk)). (12.12)

Now, let x∗ be an arbitrary accumulation point of the sequence
{xk}k∈N, i.e., limk∈K x

k = x∗ for some K ⊆ N. Taking the limit over
K in (12.12) we obtain

‖h(x∗)‖2 ≤ (lim
k∈K

2

τk
)(f(x̄)− f(x∗)) = 0. (12.13)

Thus, h(x∗) = 0 and we conclude that x∗ is a feasible point.
On the other hand, (12.11) implies

f(xk) ≤ f(x̄)− 0.5τk‖h(xk)‖2 ≤ f(x̄). (12.14)

Again, taking the limit over K and using the continuity argument we
obtain f(x∗) ≤ f(x̄) which together with the feasibility implies that
x∗ is a global solution of the problem (12.8).

Now, let us assume that the subproblems are solved approximately
with the increasing accuracy. Then the following can be proved.

Theorem 12.2 Suppose that f, h ∈ C 1 (Rn) and that limk→∞ εk = 0.
Suppose that (12.6) holds. Then every accumulation point x∗ of the
sequence {xk}k∈N generated by Algorithm 12.1 at which LICQ holds is
a KKT point of the problem (12.8). Moreover, Lagrange multipliers
associated with x∗ = limk∈K x

k are given by

lim
k∈K

τkh(xk) = µ∗. (12.15)
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Proof. Consider (12.9). This inequality implies

τk‖
m∑
i=1

hi(x
k)∇hi(xk)‖ − ‖∇f(xk)‖ ≤ εk (12.16)

and

‖
m∑
i=1

hi(x
k)∇hi(xk)‖ ≤

1

τk
(‖∇f(xk)‖+ εk). (12.17)

Taking the limit over K we obtain

m∑
i=1

hi(x
∗)∇hi(x∗) = 0

and LICQ implies that h(x∗) = 0, i.e., x∗ is feasible.
Now, denote the Jacobian of the equality constraints by A, i.e.,

A(x) = ∇h(x) and define

µk := τkh(xk). (12.18)

Then, using the definition of quadratic penalty function we obtain

∇f(xk)−∇Qx(x
k, τk) = −

m∑
i=1

τkhi(x
k)∇hi(xk) = −AT (xk)µk.

(12.19)
Multiplying the previous inequality by A(xk) from the left we obtain

−A(xk)AT (xk)µk = A(xk)(∇f(xk)−∇xQ(xk, τk)).

Furthermore, LICQ implies that rank(A(x∗)) = m, i.e., A(x∗)AT (x∗)
is nonsingular. Using the continuity of the Jacobian we conclude that
A(xk)AT (xk) is also nonsingular for k ∈ K large enough and

µk = −(A(xk)AT (xk))−1A(xk)(∇f(xk)−∇xQ(xk, τk)). (12.20)
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Now, (12.9) implies that limk∈K ∇xQ(xk, τk) = 0 and taking the limit
over K in (12.20) we conclude that

µ∗ = lim
k∈K

µk = −(A(x∗)AT (x∗))−1A(x∗)∇f(x∗).

Finally, returning to (12.19) and taking the limit over K we obtain

0 = ∇f(x∗) + AT (x∗)µ∗ = ∇f(x∗) +∇Th(x∗)µ∗ = ∇xL(x∗, µ∗)

which together with the feasibility of x∗ implies that x∗ is the KKT
point of the problem (12.8) and µ∗ is the corresponding vector of
Lagrange multipliers.

Now, let us consider the general case (12.1), with both equality
and inequality constraints. One way to cope with this problem is to
introduce the so called slack variables s ∈ Rp and form the equivalent
problem

min
y∈S̃

f(x), S̃ = {y ∈ Rn+p | y = (x; s), h(x) = 0, g(x)+s = 0, s ≥ 0}.

(12.21)
Then, quadratic penalty function takes the form

Q(y, τ) = f(x) +
τ

2
(‖h(x)‖2 + ‖g(x) + s‖2)

and every subproblem has nonnegativity constraints s ≥ 0, i.e., we
have

min
s≥0

Q(y, τk). (12.22)

Such subproblem can be solved by means of algorithms presented in
Section 11.2 for instance. Then, the framework algorithm (Algorithm
12.1) has to be altered since the stopping criterion in Step 2 is no longer
valid. Following the results from Theorem 11.2, one possible choice
would be to stop when the norm of the projected gradient direction is
smaller than the tolerance εk.
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12.2 Augmented Lagrangian method

The Augmented Lagrangian method can be viewed as a combination
of the quadratic penalty function and the Lagrangian function. One of
its main advantages is that it reduces the possibility of ill-conditioned
subproblems by a specific update of Lagrange multipliers.

Let us consider the equality constrained problem (12.8). Then the
Augmented Lagrangian function takes the form

LA(x, µ, τ) = f(x)−
m∑
i=1

µihi(x) +
1

2
τ

m∑
i=1

(hi(x))2. (12.23)

Let us consider the gradient of the Augmented Lagrangian function

∇xLA(x, µ, τ) = ∇f(x)−
m∑
i=1

(µi − τhi(x))∇hi(x). (12.24)

Looking at the proof of Theorem 12.2 (see (12.19)) and keeping in
mind that the values associated with ∇hi(x) represent estimates of
the Lagrange multipliers, following the same ideas we conclude that

µ∗i ≈ µi − τhi(x).

Therefore, the Lagrange multipliers update is as follows

µk+1 = µk − τh(xk). (12.25)

The framework algorithm is similar to Algorithm 12.1.

Algorithm 12.2

Step 0 Input parameters: Find x0 ∈ Rn, ε0 ≥ 0, τ0 > 0, µ0 ∈ Rm.

Step 1 Initialization: k = 0, x0
start = x0, εk = ε0, τk = τ0, µk = µ0.
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Step 2 Solve the subproblem minLA(x, µk, τk) approximately: Start
with xkstart, terminate when

‖∇xLA(xk, µk, τk)‖ ≤ εk. (12.26)

Step 3 Update the penalty parameter: Choose τk+1 > τk.

Step 4 Update the tolerance: Choose εk+1 ∈ [0, εk).

Step 5 Update the starting point: Set xk+1
start = xk.

Step 6 Update the Lagrange multiplier: Set

µk+1 = µk − τh(xk).

Step 7 Set k = k + 1 and go to Step 2.

Next, we state that the Augmented Lagrangian is an exact-type
penalty function under the appropriate conditions.

Theorem 12.3 Let x∗ be a local solution of the problem (12.8) at
which LICQ holds and the second order conditions given in Theorem
10.5 are satisfied with the Lagrange multiplier µ∗. Then there exists
τ ∗ > 0 such that for all τ ≥ τ ∗ x∗ is a strict local minimizer of
LA(x, µ∗, τ).

Now, let us consider the case with inequality constraints. For sim-
plicity, let us restrict our attention to the following problem

min
g(x)≤0

f(x). (12.27)

The general case (9.1) may be approached following the same ideas.
Similar to the quadratic penalty case, one way to approach this prob-
lem is to add the slack variables and obtain an equivalent problem of
the form

min
y∈S̃

f(x), S̃ = {y ∈ Rn+p | y = (x; s), g(x) + s = 0, s ≥ 0}. (12.28)
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The Augmented Lagrangian associated with this problem is

LA(y, µ, τ) = f(x)−
p∑
i=1

µi(gi(x) + si) + 0.5τ

p∑
i=1

(gi(x) + si)
2 (12.29)

and the subproblem is of the form

min
s≥0

LA(y, µk, τk). (12.30)

Now, there are two usual ways to proceed. One is to modify the Aug-
mented Lagrangian algorithm in the same manner as it was done for
the quadratic penalty method taking into account box constraints that
yield different stopping criteria with respect to (12.26). On the other
hand, notice that the corresponding Augmented Lagrangian function
is quadratic and convex with respect to s and solving the problem
(12.30) with respect to s (with fixed x) one obtains that the optimal
solution (see the Exercise 9.2, task 3.) is given by

s(x) = max{ 1

τk
µk − g(x), 0}. (12.31)

That way we obtain the subproblem

min
x
L̃A(x, µk, τk) = f(x)−

p∑
i=1

µki (gi(x) + max{ 1

τk
µki − gi(x), 0})

+ 0.5τk

p∑
i=1

(gi(x) + max{ 1

τk
µki − gi(x), 0})2.

The obtained problem is unconstrained, but nonsmooth in general so
one may have to use some generalized gradient method to cope with
this problem.
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Finally, let us see how the Lagrange multipliers associated with
the inequality constraints are updated. The Augmented Lagrangian
related directly to the problem (12.27) is

LA(x, λk, τk) = f(x) +

p∑
i=1

λki gi(x) + 0.5τk

p∑
i=1

(max{0, gi(x)})2.

(12.32)
It is nondifferentiable, but using the fact that

max{0, gi(x)} =

{
0 gi(x) ≤ 0

gi(x) gi(x) > 0

the derivative of the Augmented Lagrangian can be represented by

∇xLA(x, λk, τk) = ∇f(x)+

p∑
i=1

λki∇gi(x)+τk

p∑
i=1

max{0, gi(x)}∇gi(x).

Arranging this further we obtain

∇xLA(x, λk, τk) = ∇f(x) +

p∑
i=1

(λki + τk max{0, gi(x)})∇gi(x).

Following the same ideas as before, we consider the terms multiplying
∇gi(x) as the approximates of the optimal Lagrange multipliers and
set

λk+1 = λk + τk max{0, g(xk)}.
This way, we retain the nonnegativity of the relevant multipliers λk if
the starting guess is nonnegative.

12.3 Exercises

1. Consider the problem (12.8) and the penalty function of the form

Φ(x, l, u) = f(x) +
m∑
i=1

uie
lihi(x)/ui ,
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where li ∈ R, ui > 0 for i = 1, ...,m. Assume that f, h ∈ C 1 .
Let x∗ be a solution of the problem (12.8) with multipliers l∗

such that LICQ holds. Prove that x∗ is a stationary point of
Φ(x, l∗, u).

2. Consider a problem
min
x∈S

f(x). (12.33)

Let ρ be a nonnegative function defined as in (12.4). Suppose
that the penalty function Φ(x, τ) = f(x) + τρ(x) has a global
minimizer x∗ for τ = τ ∗ and assume that x∗ ∈ S. Prove that x∗

is a global solution of (12.33).

3. Let x∗ be a global minimizer of f over S. Assume that x̄ is not
feasible. Prove that there is a penalty parameter τ̄ > 0 such
that Φ(x∗, τ) ≤ Φ(x̄, τ) for every τ ≥ τ̄ where Φ and ρ are as in
the previous exercise.

4. Consider the problem (12.8) where f, h ∈ C 1 . Let x∗ be a
regular solution of that problem. Suppose that at least one of
the Lagrange multipliers associated with x∗ is not equal to zero.
Prove that there is no finite τ such that x∗ is a local minimizer
of the relevant quadratic penalty function.

5. State the Augmented Lagrangian algorithm for the general case
with both equality and inequality constraints - use both ap-
proaches described in Section 12.2.

6. Prove that the optimal solution of the problem

min
s≥0

q(s) := LA((x; s), µk, τk)

is given by (12.31).
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